
PROBLEM 1

a. (3 pts) Using the luminosity equation for radiative transport
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find an expression (using dimensional analysis) for the luminosity in terms of the mass
such that L ∝ Mα . Assume that the opacity, κ, for this star is entirely due to electron
scattering and is independent of mass or density.

b. (3 pts) Now assume that the actual luminosity of the star is

L = 4 × 1033(M/M⊙)αergs/sec

Using the α you found in part a), calculate the effective temperature of the star (assume
a simple black body) that has M = 3M⊙ and R = 2R⊙.

For that temperature, use the Saha equation
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(where χi for H is 13.6 ev) to determine the fraction of total H atoms (in %) that are
ionized in the atmosphere of this star. Do you expect that such a star will have strong or
weak H spectral lines, and why? What is the spectral type of this star?

c. (4 pts) Calculate (in years) and compare the free-fall, Kelvin-Helmholtz and nuclear time
scales for this same star.

The free-fall acceleration is given by

|d2R|

|dt2|
= g.

Use dimensional analysis to get an expression for the free-fall time scale, τf−f , in terms
of the average density ρ̄. For our star of M = 3 M⊙ and R = 2 R⊙, calculate τf−f .

For the Kelvin-Helmholtz time scale, use the luminosity in b) and the total gravitational
potential energy available to this 3M⊙ star.

For the nuclear time scale for the same star assume that only 10% of the star’s mass
contributes to energy generation and the luminosity is given in b). [Assume .7 % mass
loss in the nuclear conversion.] In terms of stellar evolution do your numbers for these
time scales make sense, why or why not?
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PROBLEM 2

a. (5 pts) H− (binding energy 0.754 eV) is an important source of opacity in the Sun. Using
the Saha equation, calculate the ratio of the number of H− ions to neutral hydrogen atoms
in the Sun’s photosphere. Take the temperature of the gas to be 5777K, and assume that
the electron pressure is 1.5 N m−2. Note that the Pauli exclusion principle requires that
only one state can exist for the ion because its two electrons must have opposite spins.

b. (5 pts) The Paschen series of hydrogen (n = 3) can contribute to the visible continuum
for the Sun since the series limit occurs at 820.8 nm. However, it is the contribution from
the H− ion that dominates the formation of the continuum. Using the results of part a.,
along with the Boltzmann equation, estimate the number of H− ions to hydrogen ions in
the n = 3 state.
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PROBLEM 3

A binary system consists of a neutron star (NS) with mass of 1.4 M⊙ , radius 1.00×106 cm and
a small body of mass 1.00 × 1010 grams. The small body orbits the NS in an almost circular
orbit with an initial period of 2.00 × 105 second.

a. (2 pts) What is the separation of the two bodies?

b. (2 pts) Give the total orbital energy of the system. You must include proper sign, proper
number and proper unit.

c. (1 pt) The system is losing energy, say by gravitational radiation. This will cause the
small body to spiral in and eventually collide with the neutron star. What is the orbital
period of the system when the small body is orbiting just at the surface of the NS? (Ignore
relativistic effects- the problem isn’t meant to be that hard!)

d. (5 pts) Assume that, when the period is around 2.00×105 s, the orbital period is shrinking
by 1.00 × 10−4 second each orbit as the system loses energy. What is the change of the
separation of the bodies over one orbit as they inspiral? Hint: Differentiate Kepler’s third
law with respect to time to find the relationship between period change and separation
change.
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PROBLEM 4

a. (2 pts) Write or derive an equation for hydrostatic equilibrium in a form that is suitable
for the interior of the sun, i.e., express dP/dr in terms of G, m, ρ, and r, where m is the
mass interior to radius r and ρ is the mass density.

b. (1 pt) Rewrite the equation with m as the independent variable, i.e, dP/dm = ...

c. (1 pt) Use the dP/dm equation to obtain an approximate expression for the pressure at
the center of the sun, in terms of G, M, and R, where M is the total mass of the sun and
R is the solar radius.

d. (1 pt) To the nearest powers of ten, what are the temperature and the density at the
center of the sun?

e. (1 pt) Write the “bottleneck” reaction (the least probable of the major reactions) for
fusing hydrogen to helium in the core of the sun.

f. (2 pts) At the middle of the solar photosphere, where the optical depth at 5000 Å is about
unity (1), what (to the nearest 1000 K) is the temperature? Is the mass density at this
depth much greater than, much less than, or about equal to the density of air at sea level?
Is hydrogen mostly ionized, mostly neutral, mostly locked up in diatomic molecules, or in
some other form? What is the dominant source of opacity at 5000 Å? Identify the atomic
process as specifically as you can.

g. (2 pts) In the approximation of local thermodynamic equilibrium (LTE), estimate the
fraction of all hydrogen (ionized, neutral, molecular) that is in the Balmer (n = 2) level
of neutral hydrogen.

4



PROBLEM 5

In the “Schuster-Schwarzschild Model” line formation is assumed to occur in a finite layer (the
“reversing layer”) of thickness τν , above a sharp photosphere. The intensity from the pho-
tosphere is I0. The incoming intensity at the surface is I− = 0. In the reversing layer the
continuum opacity is zero and the lines are purely scattering. Using the 2-Stream approxima-
tion,

I =

{

I+ : µ ≥ 0
I− : µ < 0

Show that:

a. (2 pts)

Hν =
1

4
(I+ − I−)

Jν =
1

2
(I+ + I−)

b. (1 pt) What is the value of ǫ?
Now we consider the transfer equation at only 2 angles with angles µ = ±1/2 (this is a
form of the discrete ordinates method).

c. (2 pts) Using the transfer equation at the 2 angles, show that Hν = constant.

d. (3 pts) Using the transfer equation at the 2 angles, and the upper boundary condition
show that J(tν)ν = 2Hν(2tν + 1), where tν is a variable.

e. (2 pts) Using the lower boundary condition show that Hν = I0
4(1+τν )

.
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PROBLEM 6

The thermal history of the early universe can be described by the thermodynamics of a perfect
(ideal) gas.

a. (4 pts) Derive the integral expression for the number density of particles at temperature
T .

b. (2 pts) In the ultrarelativistic limit, derive the number density of bosons and fermions as
functions of T .

c. (2 pts) How is the entropy density of the universe related to the number density of
relativistic species of particles?

d. (2 pts) Derive the effective degeneracy factor g∗ from the entropy density in terms of
degeneracy factors of relativistic species of particles. (2 pts)
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CONSTANTS

e = 4.8 x 10−10 esu
1 fermi = 10−13 cm
L⊙ = 3.9 x 1033 ergs/sec
M⊙ = 2 x 1033 gm
a = 7.56 x 10−15 erg cm−3deg−4

c= 3.0 x 1010 cm/sec
k = 1.38 x 10−16 erg/deg
R⊙ = 7 x 1010 cm
1 year = 3.16 x 107 seconds,
NA = 6.02 x 1023 moles/gm
G = 6.67 x 10−8gm−1cm3s−2

me=9.1 x 10−28 gm
h = 6.63 x 10−27 erg sec

7


