Classical Mechanics and,
Statistical /Thermodynamics

January 2022

. Write your answers only on the answer sheets provided, only on one side of the page.
. Write your alias (not your name) at the top of every page of your answers.
. At the top of each answer page write:

(a) The problem number,
(b) The page number for that problem,

(c) The total number of pages of your answer for that problem.

For example if your answer to problem 3 was two pages long, you would label them
“Problem 3, page 1 of 2” and “Problem 3, page 2 of 2”.

. If the answer to your problem involves units, such as SI or Gaussian units, state which
ones you are using.

- Use only the math reference provided (Schaum’s Guide). No other references are
allowed.

. Do not staple your exam when done.



Possibly Useful Information

Handy Integrals:
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Geometric Series:
Z z" for |z| <1
n=0
Stirling’s approximation:
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Levi-Civita tensor:

€ijk€ikim = 00jm — djtdim

Riemann and related functions:
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gp(1) = C(p)
C(l)
(@2)=%=1. 64493
4(3) = 1.20206
C(4) = = = 1.08232

Physical Constants:

Coulomb constant K = 8.998 x 10° N-m?/C?

po = 47 X 107'T m/A
electronic mass m, = 9.11 x 107 3'kg

Boltzmann'’s constant: kg = 1.38 x 10~3J/K

speed of light: ¢ = 3.00 x 108m/s

1

¢(—1) = —4 =0.0833333
((-2)=0

((—3) = s = 0.0083333
¢(-4)=0

€0 = 8.85 x 1072C%/N - m?

electronic charge e = 1.60 x 1071°C

Density of pure water: 1.00gm/cm?®.

Planck’s constant: & = 6.63 x 1073 m%kg/s

Ideal Gas Constant: R = 0.0820 ¢atm - mol 'K !



Classical Mechanics

1. A uniform rod of length L and mass M has a bead of mass m glued a distance L/4
from its end as shown. The rod is supported by a thin horizontal, frictionless pin acting
as an axle, and passing through the rod’s center of mass. The system starts at rest,
with the the rod placed as shown, and gravity pointing down (down the page). The
radius of the bead is small enough that you can consider it to be a point mass located
a distance L/2 from the axle.
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Axle )
Ball of mass m Rod with mass M

Figure 1: The rod rotates without friction.

(a) Calculate the moment of inertia of the rod around its center of mass. (1 point)

(b) If the system is released from rest so that it may rotate freely about the axle,
what is its initial angular acceleration? (2 points)

(c) Calculate the angular velocity of the rod when the bead reaches its lowest point.
(2 points)

(d) At what point between its initial release and its lowest point on the arc is the
total linear acceleration of the bead a maximum? (3 points)

(e) When the ball is at its lowest point on the arc the glue fails and the bead slides to
the end of the rod in a very short time, which we will treat as instantaneous. The
bead does not fall off the end, but stops at a distance L/2 from the axle. When
the ball reaches the end of the rod, will the angular velocity of the rod increase,
decrease, or remain the same? Explain your answer. (1 point)

(f) In the situation described in part (e) above, will the total kinetic energy of the
system increase, decrease, or remain the same? Explain your answer. (1 point)



2. A particle of mass, m moves without friction, confined to a surface given by z = Zar?,

where a > 0 is a constant. A gravitational field acts on the particle with an uniform
acceleration g in the —z direction.

(a) Find the Lagrangian for the system. (2 points)
(b) Find the Euler-Lagrange equations. (2 points)

(c) Assume the particle moves on a trajectory such that z is a constant, so that z = A.
Find the energy and angular momentum in terms of m, k, a, and g. (2 points)

(d) There is a small perturbation in the z direction. Find the frequency of oscillation
about the unperturbed orbit in r, assuming very small oscillation amplitude. (4
points)



3. Consider a small bead of mass m that is constrained to lie on a rigid wire that is wound
into a helix of radius R centered on the z-axis. The pitch of the helix is zp, so that
circling the z-axis exactly once counter-clockwise the bead would increase its vertical
co-ordinate by zp . The bead is assumed to move upon the wire without friction but
is subject to gravity, oriented in the z-directon (along the axis of the helix).

<A

Figure 2: The bead slides without friction.

(a) Write the general form for the kinetic energy of a particle of mass m in cylindrical
coordinates, (p, 8, z). (1 point)

(b) Construct a Lagrangian in terms of (p, 8, z) that includes the constraints required
to confine the bead to move on the helix. Assuming the bead is released from rest,
from a height h above the base of the helix, use this Lagrangian to calculate the
motion of the bead as a function of time, and the generalized forces of constraint
that act on the bead. For this part of the problem, the helix itself does not move.
(3 points)

{c) Show that total mechanical energy of the bead is conserved. (1 point)

(d) Compute the time required for the bead to reach the base, and discuss how it
depends upon the pitch. (2 points)

(e) The base of the helical wire is now affixed to a motor that generates a rotation
of the wire about the z-axis at a fixed angular frequency wy. Recompute the time
required for the bead to reach the base if it is again started from rest at a height
h above the base. Discuss the effect of the rotation on the forces of constraint
and the time it takes the bead to reach the base. {3 points)



Statistical Mechanics

4. A cylindrical container is initially separated by a clamped, thermally conductive piston
into two compartments of equal volume. The left compartment is filled with one mole
of neon gas at a pressure of four atmospheres and the right with argon gas at one
atmosphere. The gases may be considered as ideal. The whole system is initially at
temperature T = 300K, and is thermally insulated from the outside world. The heat
capacity of the cylinder-piston system is C' (a constant). The piston is now unclamped
and released to move freely without friction. Eventually, due to slight dissipation, it
comes to rest in an equilibrium position.

(a) Find the new temperature of the system. (2 points)
(b) Find the ratio of final neon to argon volumes. (2 points)

(¢) Find the total entropy change of the system. (2 points)

(d) Find the additional entropy change which would be produced if the piston were
removed. (2 points)

(e) If, in the initial state, the gas in the left compartment were a mole of argon
instead of a mole of neon, which, if any, of the answers to (A}, (B) and (C) would
be different? (2 points)

B



5. A statistical system is characterized by N distinguishable and non-interacting atoms
in thermal equilibrium with a reservoir at temperature T. Each atom can occupy the
energy levels E, = (n+1)e, withe > 0andn=0,1,2, ..., +00. The degeneracy of the
n-th level is equal to g, = A", with A > 1.

(a) Find the canonical partition function Z(T, N). (3 points)

(b) Find the average energy U(T, N) for this system. (2 points)

(c) Find the specific heat C(T, N) for this system. (2 points)

(d) What happens to the specific heat at low temperatures? (1 point)

(e) Is there a temperature above which the canonical description becomes invalid? If
yes, what is this temperature, expressed as a function of A and €? (2 points)



6. An ideal paramagnet witch magnetic moments pointing in arbitrary directions is de-
scribed by the Hamiltonian

N
'H=—Zﬁii-ﬁ=—Zchos9i

i=1 i=]

where the magnetic field H is non-zero only in the z-direction. The magnetic moments
can be represented in terms of the spherical coordinates as:

mi(8;, ) =m (sin 8; cos ¢; 1 + sin 6; sin #; 7 + cosb; k) .

The phase-space of each moment consists of a unit sphere with volume element df2; =

sin 9,‘ dB, d¢z
(a) Using the canonical ensemble, calculate the Helmholtz free energy and the internal
energy of the paramagnet. (3 points)

(b) Find the heat capacity
ou

Cyr 8_T

Does it vanish as T — 0?7 (2 points)

L
(c) Calculate the average magnetization (). (2 points)

(d) Calculate the magnetic susceptibility

__&F
Xt = OH:

T.N
(2 points)

(e) The magnetic susceptibility is related to a measurable quantity of this model via
the fluctuation-dissipation theorem. To what quantity is it proportional and why?
(1 point)
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Solution

A 2 pts) The new temperature of the system (the piston is thermally conductive).

The internal energy of an ideal gas is a function only dependent on temperature, so the internal
energy of the total system does not change. Therefore neither does the temperature. The new
equilibrium temperature is 7= 300 K.

B 2 pts) The ratio of final neon to argon volumes.
The volume ratio is the ratio of molecular numbers. and is also the ratio of initial pressures.

F:A'rViAr BNEV;Ne
Ar = Ne = RT

n n nAr nNe nAr nNe V;r nAr

= n'=

AryrAr MNeyrMNe Ar Me Ne &
BV RV Y e L a4 1
1 4
C 2pts) The total entropy change of the system.
Ne

Yy i
AS =n, Rln T +n,RIn _

=RIn +1Rln =Rln[§]+lRln(Z)=2.O J/K
4 5) 4 5

=] |

D 2pts) The additional entropy change which would be produced if the piston were removed.

VNu VAr
AS,, =n, R h{VL"’J +n, R ln( V{" J

i i

4

—Rin| L |[+LRmn % =Rln(%)+%Rln(S)=S.2J/K
5 5

|

E 2pts) If, in the initial state, the gas in the left compartment were a mole of argon instead of a
mole of neon, which, if any, of the answers to (A), (B) and {C) would be different?

Only C will change because the entropy of mixing will be zero.
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Integrate to get

(15)

>#). Since & > 0, %glr < 0, and
Problem 2:

a} The partition function is

sinh(BmH))N = Z}.

Ll 1
2
zZ= ] dSy;efmH cosbi . (97 / sin §;dfelmH cosbiyN
'1:[1 l ( -1 : ) (ﬁmH

(16)
The Helmholtz free energy is
F = —kpTlog Z = NkgT log(BmH)NkgT log{4r sinh{fmH)). (17)

The internal energy is

U= —% log Z = NkgT — NmH coth(fmH). (18)
b} From a), the heat capacity is
au mH 2
°H = g7y = ke — Neel o 7)) (19)

When T — 0, ¢y = Nkg, and is non-vanishing. It corresponds to the contribution of the
potential energy two-dimensional harmonic oscillator (the Auctuating magnetic moments
nearly aligned with the magnetic field feel a harmonic potential).

¢) Since Z = Z, the magnetization can be written as

(m) = 21; f dim(6, )ePmH cosd (20)

. 8o {my) = (my) = 0, and

H kgT
{m;) = —/ sin 0dd cos §ePrmii cosd — 'mcot'.h(m ) -.FBI_' (21)
Using the expression of F in a)}, it is straightforward to show {m) = - g%l’r e

d} We can find x.. by deriving {(m,) with respect to H. This leads to

= ~ . 22
X22 = BT ((mH) sinhz(mH/kBT)) (22)

e) Similar to ¢), we find

2 ! _2kgT kgT
(m2) = 2T ] s 09 os” 665 220 = ~ 228 (m oth( - m2 (23)
Zm J_1 H
Using the results in ¢) and d), it is straightforward to show
kgT
(Am,)* = (ml) = (ma)? = ==X (29)



