
Classical Mechanics and Statistical/Thermodynamics

January 2023

1. Write your answers only on the answer sheets provided, only on one side of the page.

2. Write your alias (not your name) at the top of every page of your answers.

3. At the top of each answer page write:

(a) The problem number,

(b) The page number for that problem,

(c) The total number of pages of your answer for that problem.

For example if your answer to problem 3 was two pages long, you would label them “Problem 3,
page 1 of 2” and “Problem 3, page 2 of 2”.

4. If the answer to your problem involves units, such as SI or Gaussian units, state which ones you
are using.

5. Use only the math reference provided (Schaum’s Guide). No other references are allowed.

6. Do not staple your exam when done.
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Possibly Useful Information

Handy Integrals: ∫ ∞

0
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−∞
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√
π
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Geometric Series:
∞∑
n=0

xn =
1

1− x
for |x| < 1

Stirling’s approximation:

n! ≈
(n
e

)n√
2πn or log(n!) ≈ n log(n)− n

Levi-Civita tensor:
ϵijkϵklm = δilδjm − δjlδim

Handy Taylor Series:

log(1 + x) =
∞∑
n=1

(−1)n+1x
n

n

log(1− x) = −
∞∑
n=1

xn

n

Riemann and related functions:

∞∑
n=1

1

np
≡ ζ(p)

∞∑
n=1

zn

np
≡ gp(z)

gp(1) = ζ(p)

ζ(1) = ∞
ζ(2) = π2

6 = 1.64493
ζ(3) = 1.20206

ζ(4) = π4

90 = 1.08232

∞∑
n=1

(−1)n+1 zn

np
≡ fp(z)

fp(−1) = −ζ(p)

ζ(−1) = − 1
12 = 0.0833333

ζ(−2) = 0
ζ(−3) = 1

120 = 0.0083333
ζ(−4) = 0
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Physical Constants:

Coulomb constant K = 8.998× 109 N-m2/C2 ϵ0 = 8.85× 10−12C2/N ·m2

µ0 = 4π × 10−7T m/A electronic charge e = 1.60× 10−19C
electronic mass me = 9.11× 10−31kg Density of pure water: 1.00gm/cm3.
Boltzmann’s constant: kB = 1.38× 10−23J/K Planck’s constant: h̄ = 6.63× 10−34m2kg/s
speed of light: c = 3.00× 108m/s Ideal Gas Constant: R = 0.0820 ℓatm ·mol−1K−1

3



Classical Mechanics

Question 1: Consider the system shown in Fig. 1. A point particle of mass m is travelling towards a
mass m1 that is connected by a massless rigid rod of length L to another mass m2. The velocity of mass
m is initially perpendicular to the connecting rod and has magnitude v. The motion of the entire system
is assumed to be confined to the 2D plane of Fig. 1. No external forces act on the system. The collision
of the masses m and m1 is assumed to be completely inelastic. All answers to the following questions
should be expressed in terms of the masses m,m1 and m2 and the initial velocity v.

Figure 1: A point particle of mass m and initial velocity v is travelling towards a mass m1 that is connected by a
massless rigid rod of length L to another mass m2.

(a) What is the final center-of-mass velocity of the total system after the collision? (1 point)

(b) Obtain the rotational velocity ω about the center-of-mass of the total mass/rod system after the
collision. (3 points)

(c) Show that the kinetic energy decreases by,

∆KE = − m1m

m1 +m
v2,

after the inelastic collision, and is thus independent of the value of m2. (3 points)

(d) Assume instead that the collision is completely elastic. Find the new rotational velocity ω′ of the
connecting rod about its center-of-mass (including masses m1 and m2) after the collision. (1 point)

(e) For the elastic case, obtain two independent equations that can be used to solve for the final velocity
of the massm and the velocity of the center-of-mass of the rod after the collision. You should assume
that the motion of mass m is still along the same axis as its initial motion after impacting m1. You
do not have to solve these equations to obtain expressions for these velocities! (2 points)
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Question 2: Consider a system of three masses connected by springs, as illustrated in Fig. 2. The central
mass has m2 = M , while the outside masses have m1 = m3 = 2M . The springs joining the masses are
each characterized by an identical spring constant k. In the following, you should assume that the motion
of the masses is constrained to one dimension.

Figure 2: Three masses are connected by a pair of identical springs.

(a) Write down a Lagrangian describing the system. (1 point)

(b) Obtain equations of motion for the positions x1, x2 and x3 of the three masses. (2 points)

(c) Obtain the frequencies of the normal modes describing motion of the masses near equilibrium. (3
points)

(d) Obtain the normal co-ordinates associated with the normal modes. (1 point)

(e) A periodic driving force is applied to the central massm2, constraining it to oscillate around its equi-
librium position by a displacement ∆x2 = A sin(ωt) where A is the amplitude of the displacement
and ω =

√
k/M . Show that at very long times (i.e., when the system has reached a steady state)

the leftmost mass m1 oscillates out of phase with the central mass m2 and obtain the amplitude of
the displacement ∆x1 from equilibrium. (3 points)
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Question 3: Consider a particle of massmmoving in three dimensions that is described by a Lagrangian,

L(q, q̇) =
m

2
(q̇− Ωq)2

with generalized co-ordinates q = (q1, q2, q3), associated generalized velocities q̇ = (q̇1, q̇2, q̇3) and Ω is a
constant with dimensions 1/time.

(a) Compute the energy function associated with the Lagrangian and state whether or not it is a
conserved quantity. Are the linear and angular momentum conserved? (2 points)

(b) Show that the Hamiltonian of the system is,

H(q,p) =
p2

2m
+Ωp · q,

where q and p are the generalized position and momentum. (2 points)

(c) What does it mean for a transformation to be canonical in classical mechanics? Why is it important
whether or not a transformation is canonical? (2 points)

(d) Show that the transformation,

Q = q+
1

2mΩ
p,

P = p.

is canonical. Calculate the new Hamiltonian and equations of motion (Q̇,Ṗ) of these co-ordinates.
(4 points)
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Statistical Mechanics

Question 4: Consider a classical ideal gas of N molecules confined to a volume V . The system is
described by the equation of state,

PV = NkBT,

where T is the temperature and P the pressure of the gas and kB is the Boltzmann constant.

(a) Suppose that the heat capacity at constant volume CV (i.e., the molecular specific heat) is known.
Obtain an expression for the heat capacity at constant pressure, CP , in terms of CV . (3 points)

(b) For an isothermal process we have that PV is a constant. Derive the analogous expression for an
adiabatic process. (3 points)

(c) Suppose that the gas under consideration is monatomic helium and it is contained in a cubic box of
side length L. The box is compressed so that the side length is halved (L → L/2) in an adiabatic
process. Assuming that the gas remains ideal throughout the process, calculate the factor by which
the pressure increases. (3 points)

(d) If the process above was repeated using nitrogen, would the pressure change be different? Why/why
not? You do not have to repeat the calculation, a conceptual explanation is sufficient. (1 point)
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Question 5: The stretching and contraction of a polymer (or analogously a rubber band) can be modelled
by a chain composed of N massless segments, each of a fixed length ℓ. Each segment of the chain can be
in one of two states, parallel or anti-parallel (see Fig. 3).

Figure 3: A polymer is modelled by a chain of N segments, each of a fixed length ℓ, that can point in one of
two possible directions, parallel or anti-parallel to the overall chain. In parts (c)-(e) the chain is encased inside a
narrow tube (not shown).

(a) Write an expression Ω(L,N) that corresponds to the total number of possible configurations of the
chain when it has total length L (i.e., L is the end-to-end length of the chain). (2 points)

(b) Obtain an expression for the entropy S(L,N) of the chain as a function of N and L. Hint: You
should simplify your expression using Stirling’s formula. (2 points)

Now, we assume that the polymer is placed inside a narrow tube. This containing tube is uniformly
squeezed so that there is an energetic preference for the chain to be in a stretched configuration (L ̸= 0).
In this regime, an expression for the energy of the chain is,

E(L,N) = −σL2

2N
,

where σ is a constant that characterizes the applied squeezing. You should use this expression for energy
for the remaining questions

(c) Show that the free energy is given by,

F (T, L,N) = −σL2

2N
+

kBT

2

{(
N +

L

ℓ

)
log

(
N +

L

ℓ

)
+

(
N − L

ℓ

)
log

(
N − L

ℓ

)

−N [log(2) + 2 log(N)]

}
.

(1 point)

(d) Show that the tension force acting on the end points of the chain is,

f = −σℓx+
kBT

2ℓ
log

(
1 + x

1− x

)
.

where x = L/(Nℓ) is the normalized chain length. Hint: The work done expanding the chain is
dW = fdL. (3 points)

(e) Typically, a polymer under fixed tension will contract upon heating, as a result of the increasing
number of possible configurations of the links in the chain for L < Nℓ. However, as a result of
the applied squeezing, there is a critical temperature below which the chain prefers to be stretched.
Show that the critical temperature is given by

Tc =
σℓ2

kB
.

Hint: Consider your expression for the tension force in part (d) when x is very small. (2 points)
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Question 6: Consider a uniform two-dimensional (2D) gas of massless, ultra-relativistic spin-0 bosons
confined to an area A. The gas is characterized by a total average particle number ⟨N⟩ and single particle
energy ϵ = cp, where p = |p| is the magnitude of the particle’s momentum and c the speed of light.

(a) The Bose-Einstein distribution describes the occupation of a state with energy ϵ,

⟨Nϵ⟩ =
1

eβ(ϵ−µ) − 1
,

where µ is the chemical potential and β = (kBT )
−1. For the system under consideration, can the

chemical potential be positive? What happens as µ approaches ϵ? (1 point)

(b) Show that the density of particles, n = ⟨N⟩/A, can be written in terms of the integral,

n =
1

2πβ2c2h̄2

∫ ∞

0

zxe−x

1− ze−x
dx,

where x = βcp and z = eµβ. Hint: Start by writing an expression for n as an integral over all
phase-space. (3 points)

(c) From the previous expression for n, show that the critical temperature for a BEC to form is,

Tc =
2ch̄

kB

√
3n

π
.

(3 points)

(d) A uniform non-relativistic gas of massive bosons confined to an area in 2D does not form a BEC
at any temperature. What are the key differences for the relativistic gas that enable a condensate
to be realized for T < Tc? (2 points)

(e) Use your result for the critical temperature in (c) to show that the occupation of the ground-state
behaves as,

⟨N0⟩ = ⟨N⟩

[
1−

(
T

Tc

)2
]
.

(1 point)
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