
Electrodynamics Qualifier Examination

August 21, 2008

General Instructions: In all cases, be sure to state your system of

units. Show all your work, write only on one side of the designated paper,
and if you get stuck on one part, assume a result and proceed onward. The
points given for each part of each problem are indicated. Each problem
carries equal weight.
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1. In relativistic notation, the field strength tensor F µν is given by F µν =
∂µAν −∂νAµ in terms of the 4-vector potential Aµ = (φ,A). Maxwell’s
equations become

∂νF
µν = kJν , Jµ = (cρ,J),

and k is a constant depending on the system of units adopted.

a) 1 pt. Write Maxwell’s equations in terms of Aµ.

b) 2pts. Show that the field strength tensor is invariant under a gauge
transformation,

Aµ → A′µ = Aµ + ∂µλ,

where λ is any function of space and time.

c) 1 pt. How does the form of Maxwell’s equations found in part a) change
if we exploit the gauge freedom to impose the Lorenz condition

∂µA
µ = 0?

d) 2pts. Show that further gauge transformations are possible provided λ′

satisfies
∂2λ′ ≡ ∂µ∂µλ

′ = 0.

e) 2pts. In empty space, Jµ = 0, impose the further condition A0 = 0
and rewrite the Lorenz gauge condition to obtain the radiation or
Coulomb gauge condition. Is this gauge condition Lorentz invari-
ant?

f) 2pts. Show that the plane-wave function

Aµ(x) = aeip·xǫµ(p),

where pµ = (ω/c,k) is the propagation or wave vector, xµ =
(ct,x), x · p = xµpµ, a is a constant, and ǫµ is the polarization
4-vector, satisfies the Lorenz gauge condition provided ǫµ satisfies
a particular condition. What is this condition? If this condition is
satisfied, show that the empty-space Maxwell equation is satisfied
provided there is a constraint on p2 = pµpµ. What does this
constraint imply about the rest mass of the photon?
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2. Consider a monochromatic plane electromagnetic wave of frequency ω
propagating in a non-magnetic dielectric (with index of refraction n1),
traveling in the z direction and polarized in the x direction, which
impinges normally upon a second non-magnetic semi-infinite dielectric
material (with index of refraction n2), where the boundary between the
two media occurs at z = 0, as shown in Fig. 1. The incident electric
field is

EI(z, t) = x̂E0Ie
i(kz−ωt).

There are no free charges or currents in either medium.
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Figure 1: Plane wave normally incident on a surface separating two dielectric
materials at z = 0. The medium in the the region z < 0 has index of
refraction n1 while the material in the region z > 0 has index of refraction
n2.

a) 1 pt. Use Maxwell’s equations to determine the relation between k and
ω in each region.

b) 1 pt. Use Maxwell’s equations to determine the incident magnetic field,
BI(z, t), using the result of part b).

c) 1 pt. What are the forms of the reflected wave ER(z, t), BR(z, t) (z < 0),
and of the transmitted wave ET (z, t), BT (z, t) (z > 0)?

d) 2pts. Apply the appropriate boundary conditions at the interface be-
tween the two media to obtain the equations determining the re-
flected amplitudes E0R and B0R and the transmitted amplitude
E0T and B0T in terms of E0I .

e) 2pts. Solve these equations for the reflection and transmission coeffi-
cients, r = E0R/E0I , t = E0T /E0I in terms of the indices of re-
fraction of the two media.
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f) 2pts. Show that the averaged energy flux in a plane wave of amplitude
E0 moving in a medium with index of refraction n is given by
(Gaussian units)

S =
c

8π
n|E0|

2.

Show that the relative reflected and transmitted energy fluxes are

R =
SR

SI

=

(

n1 − n2

n1 + n2

)2

, T =
ST

SI

=
4n1n2

(n1 + n2)2
.

g) 1 pt. Show that R + T = 1. Why is this as expected?
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3. A relativistic particle of rest mass m and charge e is moving in a uniform
(constant and static) magnetic field B. The equations of motion for
the particle momentum p and its energy E are (Gaussian units)

dp

dt
=

e

c
v ×B,

dE

dt
= 0.

a) 1 pt. Why is the particle energy conserved?

b) 1 pt. Express p in terms of m and the particle velocity v, and E in
terms of m and v.

c) 3pts. Show that these equations of motion can be written as

dv

dt
= ω × v,

and express ω in terms of e, E, and B. This says that the velocity
vector precesses with angular velocity ω.

d) 3pts. Now suppose the motion is confined to the plane perpendicular
to B, that is, B ⊥ v. Then show that the particle moves with
angular speed ω in a circle of radius R. Give an equation for R in
terms of v, E, e, and B.

e) 2pts. Now give an equation relating the magnitude of the particle mo-
mentum p to the radius R found in part d). Thus show that a
measurement of the radius of the orbit determines the particle mo-
mentum. If the velocity of the particle is independently known,
we can then determine the mass m of the particle, according to
the relation given in part b).
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Figure 2: Hollow cylinder (radius a and length l) containing uniform gas
flowing along the axis, the z direction, with velocity v. Protons are injected
into the cylinder with velocity V parallel to the axis. As a result of magnetic
forces, they are brought to a focus at a point on the z axis a distance p far
from the cylinder, p ≫ l.

4. Consider a hollow cylinder of radius a and length l filled with a com-
pletely ionized gas of uniform charge density ρ which is moving parallel
to the axis of the cylinder with velocity v.

a) 3pts. Find the magnetic field (magnitude and direction) at a distance r
from the axis of the cylinder, for r < a; assume that we are well
inside the cylinder and that l ≫ r so that we can neglect edge
effects. Assume that the gas is nonmagnetic.

b) 3pts. Suppose a beam of nonrelativistic protons of mass m and velocity
V are sent into this cylinder with their initial velocities parallel
to the z axis. Neglect electrostatic, edge effects, and collisions
between protons and the gas. Show that while in the gas-filled
cylinder, the protons experience a force pushing them toward the
axis of the cylinder. Calculate the radial velocity Vr acquired by
the protons when they exit the cylinder. Assume that the distance
moved toward the axis while in the cylinder is negligible.

c) 2pts. After the protons leave the cylinder, they continue to move toward
the z axis with constant radial velocity Vr. Calculate the time T
required for the protons to reach the axis.

d) 2pts. As a result, the protons will travel through the cylinder and be
focused at a point p on the z axis beyond the cylinder where p ≫ l.
Find p and show that it is independent of the initial distance of
the protons from the axis when they enter the cylinder.
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5. Consider an infinitely long, solid, nonmagnetic conducting rod of ra-
dius a centered on the z axis. An infinitely long, hollow, conducting
cylinder with inner radius b > a and outer radius d is coaxial with
the rod. Let r be the radial distance perpendicular to the axis of the
rod and the cylinder. The region between the conducting rod and the
conducting cylinder (that is, a < r < b) is filled with a nonconducting,
linear, isotropic magnetic material with a constant relative permeabil-
ity K = µ/µ0, where µ is the permeability of the material, and µ0 is
the permeability of free space (µ0 = 1 in Gaussian units).

The rod carries a current I in the +z direction while the concentric
cylinder carries a current I in the −z direction. We assume that the
current density j is uniform and of the same magnitude in both the rod
and the cylinder,

j =
I

πa2
=

I

π(d2 − b2)
.

a) 3 pts. Calculate the magnetic field H(r) for the four regions

I: r ≤ a, II: a ≤ r ≤ b, III: b ≤ r ≤ d, IV: d ≤ r.

b) 3 pts. Calculate the magnetic flux (per unit length in the z direction)
crossing a half-plane extending from the axis of the coaxial system
and extending to infinity, that is, the surface defined by x > 0,
y = 0, −∞ < z < ∞. Use this result to find the self-inductance
L per unit length of the coaxial conductor.

c) 2 pts. Compute the magnetic energy U per unit length along the z axis
stored in the region filled with the linear magnetic material, that
is for region II, a < r < b.

d) 2 pts. Using the result from part c), show that the contribution to L
coming from the region a ≤ r ≤ b, LII, is consistent with the
contribution from the same region that you calculated in part b)
above. That is, compute 1

2
LIII

2 and compare with the result of
part c).
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Figure 3: Geometry of point charge placed between grounded, parallel, con-
ducting plates. The plates extend infinitely in the x and y directions.

6. Consider a point charge q placed between two parallel conducting plates,
as shown in Fig. 3. The electrostatic potential φ vanishes at the two
plates, located on the planes z = 0 and z = a.

a) 2pts. Because the physics has translational symmetry in the x-y plane,
show that the potential at a point r between the plates due to a
point charge at r′ can be written in the form (Gaussian units)

φ(r) = 4πq

∫

(d2r⊥)

(2π)2
eir⊥·(r−r

′)⊥g(z, z′; k⊥),

with r⊥ = (x, y), r′
⊥

= (x′, y′), where the function g satisfies

(

−
∂2

∂z2
+ k2

⊥

)

g(z, z′; k⊥) = δ(z − z′).

What are the boundary conditions on g(z, z′; k⊥) at z = 0 and
z = a?

b) 3pts. Solve this differential equation explicitly in closed form by solving
it in two regions, I: 0 < z < z′ and II: z′ < z < a, and match-
ing the solutions appropriately to reproduce the δ-function in the
differential equation.

c) 2pts. What is the relationship between the electric field at the surface
of a conductor and the surface charge density on the surface?

d) 3pts. Determine the normal component of the electric field just to the
right of the plate at z = 0 (that is, at z = 0 + ǫ) and just to the
left of the plate at z = a (that is, at z = a−ǫ). By integrating this
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field over the surfaces, and using the result of part c), determine
the total charge on each of the conducting surfaces. Is the sum of
the charges on the two plates as expected?
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