E&M

Fall 2009

1 Magnetic Materials

Assume the field inside a large piece of magnetic material is $\vec{\mathbf{B}}_0$ so that

$$\vec{\mathbf{H}}_0 = \frac{1}{\mu_0} \vec{\mathbf{B}}_0 - \vec{\mathbf{M}}$$

- a) Consider a small spherical cavity that is hollowed out of the material. Find the field $\vec{\mathbf{B}}$, at the center of the cavity, in terms $\vec{\mathbf{B}}_0$ and $\vec{\mathbf{M}}$. Also find $\vec{\mathbf{H}}$ at the center of the cavity in terms of $\vec{\mathbf{H}}_0$ and $\vec{\mathbf{M}}$. (3 Points)
- b) Do the same calculations for a long needle-shaped cavity running parallel to $\vec{\mathbf{M}}$. (3 Points)
- c) Do the same calculations for a thin wafer-shaped cavity perpendicular to $\vec{\mathbf{M}}$. (4 Points)

Hint: Assume the cavities are small enough so that $\vec{\mathbf{M}}$, $\vec{\mathbf{B}}_0$ and $\vec{\mathbf{H}}_0$ are essentially constant. The field of a magnetized sphere is $\vec{\mathbf{B}} = \frac{2}{3}\mu_0\vec{\mathbf{M}}$ and the field inside a long solenoid is $\mu_0 K$ where K is the surface current density.

2 Space-charge-limited Thermionic Planar Diode

Consider a planar diode with a grounded, hot metallic cathode at x = 0 and a metallic anode plate at x = H, which is held at an electrical potential of V_p relative to ground. [Cathode and anode plates are infinite in the y and z directions.] The cathode is very hot and emits copious electrons such that the diode is "space charge limited", that is: the electric field **at the cathode is zero**. The current density J is constant and in the -x direction. [Ignore any transient effects.]

In this problem let : V(x) be the electric potential, E(x) be the electric field, s(x) be the velocity of an electron, $\rho(x)$ be the charge density, and m and -e be the mass and charge of an electron respectively.

- a) State whether you are using MKS or cgs units. (1 Point)
- b) Find $\rho(x)$ as a function of V(x) and any other relevant variables. (2 Points)
- c) Use Poisson's equation to find the differential equation for V(x). (2 Points)
- d) State the boundary conditions for E(x) at x = 0 and V(x), at x = 0 and x = H. (2 Points)

Work e) or f) on a separate sheet of paper and submit only the one you wish to be graded.

e) Solve for V(x) in terms of V_p and H using results of c) and d). ((3 Points for part e or f)

Hint: multiply both sides of your differential equation by dV(x)/dx and recall that: $(dV/dx)(d^2V/dx^2) = \frac{1}{2}d(dV/dx)^2/dx$

If you have trouble using the above hint to complete part e), then try f).

f) Assume V(x) is of the form: $Ax^n + Bx + C$ and solve for V(x) in terms of V_p and H using parts c) and d) above. Find the current density J in terms of V_p and H. (3 Points for part e or f)

3 Wire

An infinitely-long, thin wire (radius b) is coated with a dielectric (relative dielectric constant $k = \epsilon/\epsilon_0$ with radius a > b). The metal wire has charge per unit length λ

- a) Find the electric displacement $\vec{\mathbf{D}}$ everywhere. (2 points)
- b) Find the electric field $\vec{\mathbf{E}}$ everywhere. (2 points)
- c) Find the polarization $\vec{\mathbf{P}}$ everywhere. (3 points)
- d) Find **all** the bound charge everywhere. (3 points)

4 Electromagnetic Waves

Consider a plane electromagnetic wave with propagation vector $\vec{\mathbf{k}}$ and angular frequency ω . Construct the four-vector $k^{\mu} = (\omega/c, \vec{\mathbf{k}})$. Use the metric $g_{\mu\nu} = diag(-1, 1, 1, 1)$

- a)Verify that $k_{\mu}k^{\mu} = 0.$ (2 points)
- b) In terms of the position four-vector $x^{\mu} = (ct, \vec{\mathbf{r}})$, show that the plane wave propagation factor is

$$e^{ik_{\mu}x^{\mu}} = e^{i(\mathbf{k}\cdot\vec{\mathbf{r}}-\omega t)}.$$

(2 points)

c) Now use Lorentz transformations to show that radiation of frequency ω propagating at an angle θ with respect to the z-axis, will, to an observer moving with relative velocity $\nu = \beta c$ along the z axis, have the frequency

$$\omega' = \frac{1}{\sqrt{1 - \beta^2}} \omega (1 - \beta \cos \theta).$$

(2 points)

d) Further show that the moving observer sees the radiation propagating at an angle θ' with repect to the z-axis, where

$$\cos\theta' = \frac{\cos\theta - \beta}{1 - \beta\cos\theta},$$

which is aberration. (2 points)

e) Find θ' explicitly if $|\beta| \ll 1$. (2 points)

5 Thin Infinite Sheet

- a) Compute the 4-current $J^{\alpha}(x^{\beta})$ and the E&M fields for a stationary, thin, and infinite sheet of charge located at z = 0 in the lab. Assume the surface charge density is a constant σ_0 . (4 points)
- b) Now assume you move with speed v < c in the x-direction relative to the lab. What is the 4-current $J'^{\alpha}(x^{\beta})$ and E&M field in your frame? (6 points)

Figure 1: Stack of Disks for Stress Tensor Problem. Problem 6

6 Stress Tensor

Consider a long cylinder of radius a and length L made up of a stack of infinitesimally thin discs (See Figure). Assume the disks alternate between disks with charge density ρ and angular velocity $\omega \hat{z}$ and disks with charge density $-\rho$ and angular velocity $-\omega \hat{z}$.

- a) Specify the system of units you will be using. (1 points)
- b) write down an expression fo the charge and current density in any small volume (of dimension larger than the infinitesimal thickness of the disks). (1 points)
- b) Find the electromagnetic field everywhere. (2 points)
- c) Find the Maxwell Stress Tensor everywhere. (2 points)
- d) Use your answer to part c to find the force of the top half of the cylinder on the bottom half. (2 points)
- e) Is the force attractive or repulsive? (2 points)