
E & M Qualifier

August 15, 2014

To insure that the your work is graded correctly you MUST:

1. use only the blank answer paper provided,

2. write only on one side of the page,

3. put your alias (NOT YOUR REAL NAME) on every page,

4. start each problem by stating your units e.g., SI or Gaussian,

5. number every page as follows

(a) put the problem number on every page you hand in for that prob-
lem,

(b) starting numbering each problem with page 1,

(c) when you finish a problem put the total number of pages you used
for that problem on every page you hand in for that problem.

6. DO NOT staple your exam when done.

Use only the reference material supplied (Schaum’s Guides).
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1. A large flat thin disk of linear magnetic material of thickness d and
radius R ≫ d which has magnetic permeability µ is placed in a uniform
magnetic field H = H0ẑ as shown in the figure. The bottom of the slab
is in the x-y plane at z = 0 and the top is at z = d. Assume the
source of the uniform magnetic field is far away and assume the slab
is infinite (R → ∞) in the x-y directions. In addition to possessing a
linear magnetic susceptibility χm related to the materials permeability,
the slab also possesses a uniform permanent magnetization M0ẑ,
producing a total magnetization density

M = χmH + M0ẑ where χSI
m = 4πχG

m.

Recall that in SI (mks) and Gaussian (cgs) units

BSI = µ0(H
SI + MSI), BG = HG + 4πMG.

(a) [1 pts] In this problem you are to write the magnetic field H as
the gradient of a scalar potential

H = −∇ΦM .

Explain why you can do this.

(b) [3 pts] What is the form of the Poisson equation satisfied by ΦM

inside and outside the slab, i.e.,

∇2ΦM =?

Solve this equation for the 3 spatial regions separated by z 6= 0 and
z 6= d. Observe that there is no x or y dependence in this problem.
Make sure your ΦM far above and below the slab produces the
uniform magnetic field H = H0ẑ.

(c) [2 pts] What general boundary conditions are satisfied by H and
B at the two junctions z = 0 and z = d. What conditions are
placed on ΦM and its z-derivative by these junction conditions for
this particular problem?

(d) [2 pts] Use your solutions from (b) and boundary conditions from
(c) to find ΦM inside and outside the slab.

(e) [2 pts] Calculate H and B inside and outside the slab.
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2. Consider a tiny sphere of radius R, composed of a linear dielectric
material of susceptibility χe and permittivity ǫ which is a distance d
from a thin but very long (R << d << ℓ) wire possessing a uniform
line charge per unit length λ. Recall that

D = ǫE where ǫG = ǫSI/ǫ0 = 1 + χSI
e = 1 + 4πχG

e

P = χeE where χSI
e = 4πχG

e

DSI = ǫ0(E
SI + PSI), DG = EG + 4πPG

The electrostatic potential for a point dipole at the origin is

ΦSI =
1

4πǫ0

p · r

r3
,

ΦG =
p · r

r3
,

(a) [2 pts] Calculate the magnitude of the electric field Ewire at the
center of the sphere caused by the charge on the wire.

(b) [2 pts] As an approximation, assume the dielectric sphere is cen-
tered at the origin in a uniform electric field of the form Ewire x̂.
The polarization charge induced on the sphere’s surface produces
an electric dipole field Edipole outside the sphere and makes a uni-
form contribution to the net uniform field E0 x̂ that exists inside
the sphere. Give an expression for the electric dipole field Edipole

as a function of the sphere’s uniform polarization density P if the
dipole is oriented in the x̂ direction, i.e., if p = p0 x̂ = 4/3 πR3 P.

(c) [3 pts] What boundary conditions must E and D satisfy at the
sphere’s surface? Use these boundary conditions to calculate the
net electric dipole moment p0x̂ of the sphere?

(d) [3 pts] Compute the force exerted on the sphere by the wire by
computing the force on a point dipole in the non-uniform electric
field caused by the wire. Is the sphere attracted or repelled by the
charged wire?
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3. Consider two concentric conducting spherical shells of radii a and b
with b > a. The space between the two shells is a filled with Ohmic
material of constant conductivity σ, permittivity ǫ0, and permuability
µ0. The system is charged such that at time t = 0 the inner conductor
has charge +Q0 and the outer conductor has charge −Q0. At times
t > 0 the charge will flow from the inner shell to the outer shell.

(a) [2 pts] Use Gauss’s law to relate the electric field E(t, r) between
the plates to the charge Q(t) on the inner plate.

(b) [4 pts] Use the conservation of charge and

J(t, r) = σ E(t, r),

to find Q(t).

(c) [2 pts] Use Faraday’s law and your electric field to show that
B(t, r) = 0.

(d) [2 pts] Confirm that Ampère’s law is satisfied.
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4. A uniform sheet of current in the (x, y) plane at z = 0 suddenly turns
on at t = 0 and has a surface current density

K(t, r) = 0, t < 0,

K(t, r) = K0 x̂, t ≥ 0,

(1)

where K0 has units of current/length. The corresponding volume cur-
rent density is

J(t, r) = K(t, r) δ(z).

The retarded vector potential in SI units and in the Lorentz gauge for
an arbitrary current source can found by integrating

A(t, r) =
(µ0

4π

)

∫

J(t − |r− r′|/c, r′)

|r − r′|
d3r′.

In Gaussian units the factor µ0/4π is replaced by 1/c.

(a) [4 pts] In cylindrical polar coordinates evaluate 2 of the 3 integrals
in the above expression for A(t, r), i.e., integrate over z′ and φ′

leaving A(t, r) as an integral over the single coordinate ρ′.

(b) [3 pts] Evaluate the ρ′ integral giving A(t, r) as a function of t
and z only.

(c) [3 pts] Compute the magnetic induction from your vector poten-
tial.
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5. A linearly-polarized harmonic (e−iωt) plane electromagnetic wave trav-
eling to the right in a homogeneous dielectric medium described by
a real dielectric constant ǫ1, strikes a second homogeneous dielectric
material described by another real dielectric constant ǫ2 > ǫ1 (see the
figure). Assume that both materials have no magnetic susceptibility,
χm = 0, and that the incidence angle is 0o (ı.e., the wave is traveling
perpendicular to the junction). Assume the incoming wave is polarized
in the x̂ direction and that its electric field amplitude is E0, i.e., assume
the incoming electric field is the real part of

E = E0 ei(kz−wt) x̂.

(a) [2 pts] Give the direction of the magnetic induction B associated
with the above incoming wave and give its amplitude B0 as a
function of E0. Also give k as a function of ω.

(b) [2 pts] Give similar expressions for E and B of the reflected and
transmitted waves. Use E ′′

0 and E ′

0 for the respective electric field
amplitudes of the reflected and transmitted waves.

(c) [3 pts] Apply the boundary conditions at the junction/interface
between the dielectrics to the incoming, reflected, and transmit-
ted wave to compute E ′′

0 and E ′

0 as functions of E0 and the two
dielectric constants ǫ1 and ǫ2.

(d) [3 pts] Evaluate the reflection and transmission coefficients, R and
T , for above waves. Recall that R and T are computed from ratios
of time averaged Poynting vectors which are defined by

S ≡ E ×H, (SI)

S ≡
c

4π
E × H. (Gaussian)
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6. In the lab you measure a uniform electric field and a uniform magnetic
induction

E = E0(cos 45◦ x̂ + sin 45◦ ŷ),

B = B0 x̂,

where B0 = E0 in Gaussian units or B0 = E0/c in SI units. The goal
of this problem is to compute the E′ and B′ fields an observer sees if
moving relative to the lab with a velocity v = v0 ẑ.

(a) [2 pts] Combine E and B into a single 4×4 anti-symmetric electro-
magnetic field tensor F αβ.

(b) [2 pts] Give the 4×4 Lorentz boost Lα
β that transforms the lab co-

ordinates (ct, x, y, z) into the moving frame’s coordinates (ct′, x′, y′, z′)
i.e., x′α = Lα

βxβ where xβ = (ct, x, y, z). In matrix notation
x′ = L x.

(c) [3 pts] Find E′ and B′ by by boosting the F tensor, i.e., compute
F ′αβ = Lα

σLβ

λF
σλ which in matrix notation is F ′ = LFL⊤

(d) [3 pts] For what value of v0 will E′ and B′ be parallel?

7


