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1. A rotating thin, non-conducting, sphere of radius R is covered with a
uniform surface charge density oy. If the angular velocity is in the +2Z
direction and has a constant magnitude wy:

(a) [3 pts] Compute the surface current density K(6,¢) (magnitude
and direction) as a function of R, gy, and wy.

(b) [3 pts] Compute the magnetic dipole moment mq of the rotating
sphere.

(c) [4 pts] The magnetic induction exterior to the sphere turns out to
be a simple magnetic dipole field. Compute B(r, 8, ¢) for r > R
assuming the vector potential is of the form:
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Figure 1: In Gaussian units ¢ — 1 and po — 1

2. Within a transformer, oscillating magnetic fields and their associated
electric fields penetrate into the transformer’s iron core producing “eddy”
currents which heat and frequently destroy the transformer. In this
problem you are to analyze the depths to which these currents pene-
trate and the phase difference between the driving harmonic B field
and the lagging eddy current.

A large slab of permeable (u >> 1) conductor with conductivity ¢ > 0
and with negligible permittivity (e = €g) is located in the x-y plane at
z > 0 as shown in the figure. A low frequency wave, w << /€, whose
magnetic induction is the real part of

B = Boet(kz—wt)y)
diminishes as z increases because k is complex.

(a) [2 pts] Give Maxwell’s 4 macroscopic equations appropriate for
this material (p = 0,D = ¢E,B = yH, and J = oE).

(b) [2 pts] Use Maxwell’s equations to find the complex wave number
k as a function of w, o, i, and €.

(c) [3 pts] The depth at which the amplitude reaches e~ times its orig-
inal value is called the skin depth, §. The skin depth diminishes
with the wave’s frequency. For low frequency waves (w << o/€)
determine 4.

(d) [3 pts] For low frequency waves compute the phase lag of the eddy
current density J relative to the magnetic induction B.
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3.

(a) [1 pts] Give the 4-current J%(z#) for the static surface charge
density op shown in the figure (a thin uniform and infinite sheet
of charge located at z = 0 in the lab).

(b) [2 pts] Give the electric field E and the magnetic induction B
caused by the static surface charge.

(c) [2 pts] Compute the 4-current J'*(z’?) in a frame that moves with
speed v < c in the positive z-direction relative to the lab (v isn’t
necessarily small).

(d) [1 pts] What is the surface charge density o’ in the moving frame?

(e) [1 pts] What is the electric field E' in the moving frame?

(f) [1 pts] What is the surface current density K’ in the moving frame?
)

(g) [2 pts] What is the magnetic induction B’ in the moving frame?
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4. A current balance consists of two very long rigid parallel wires of lengths
L that are connected at each end by springs (see the figure). The spring
constant of both springs is k and the equilibrium distance between the
wires, d(I), depends on the current. Assume d << L.

(a) [2 pts] If a current I flows through the closed circuit of the 2 wires
and 2 springs, find an expression for the magnetic induction B;(2)
created by the first wire at the location of the second. What is
the direction of this B;(2) field (give the direction as up, down,
left, right, into, or out of the page)?

(b) [2 pts] Find an expression for the magnetic force F1(2) on the
second wire due to the B;(2). What is the direction of this force?

(c) [2 pts] Find an expression for the magnetic force F5(1) on the first
wire due to the magnetic induction created by the second. What
is the direction of this force?

(d) [4 pts] Are the springs stretched or compressed from equilibrium?
Using the above results, find an expression for the current as a
function of the amount the springs are stretch/compressed.
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5. In spherical polar coordinates the solution to the Laplace equation
V2®(r,0,¢) = 0, for a spherical region 7; < r < 1y can be expanded in
terms of spherical harmonics in the following form:

£=00
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where Ay, and By, are constants.

(a) [3 pts] If the potential ®(r, 8, $) is given on a sphere 7 = a but
satisfies the laplace equation everywhere else, what is the form of
the potential inside (0 < r < a) the sphere? Outside (a < r < 00)
the sphere?

(b) [7 pts] For the particular potential given in the figure, ®(r =
a,0,¢) = Vysinfcos@p, what is the potential inside the sphere?
Outside (a < r < 00) the sphere?

Recall that the spherical harmonics are ortho-normal on the sphere and

for£=1
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6. A point dipole with dipole moment p = p(sin % + cos @ 2) is located
on the z-axis a distance d from a large flat grounded conducting plate
situated in the z=0 plane (see the figure).

(a) [2 pts] The part of the total potential in the region 2 > 0 caused
by the induced surface charge on the grounded conductor at z =0
is the same as the potential of an image dipole. What is the dipole
moment p; of the image dipole and where is it located?

(b) [3 pts] What is the total electrostatic potential in the region z > 07

(c) [3 pts] How much work must be done to remove the dipole from
z=d to z = +o00?

(d) [2 pts] When at z = d what force does the dipole experience?

Hint: The electrostatic potential caused by an ideal point dipole located
at the origin (r = 0) with dipole moment p = p*% + p¥y + p*2 is

Og(r) = %—3—1: Gaussian units
1 p-
bgr(r) = s % ST units



