
E & M Qualifier

January 14, 2016

To insure that the your work is graded correctly you MUST:

1. use only the reference material supplied (Schaum’s Guides),

2. use only the blank answer paper provided,

3. write only on one side of the page,

4. put your alias (NOT YOUR REAL NAME) on every page,

5. start each problem by stating your units e.g., SI or Gaussian,

6. when you complete a problem put 3 numbers on every page used for
that problem as follows:

(a) the first number is the problem number,

(b) the second number is the page number for that problem (start
each problem with page number 1),

(c) the third number is the total number of pages you used to answer
that problem,

(d) try to answer every problem, but if you don’t please include a
single numbered page stating that you have skipped that problem.

7. DO NOT staple your exam when done. Paper clips will be provided.

1



1. Consider a Lorentz frame K containing no polarizable materials in
which there is a magnetic induction B = Bx x̂ + By ŷ + Bz ẑ but no
electric field.

(a) [1 pt] For the above magnetic induction, write down the 4-dimensional
electromagnetic field tensor Fαβ in frame K as a matrix.

(b) [1 pt] Write down a homogeneous Lorentz boost Λα
β in the y-

direction from frame K to another frame K′ which is moving with
velocity v = v0 ŷ as seen by observers that are at rest in frame K.

(c) [2 pt] Apply the boost Λα
β to Fαβ to find F ′αβ, the field strength

tensor as seen in the moving frame K′ .

(d) [2 pt] What are the electric field components E ′x, E ′y, and E ′z and
the magnetic induction components B′x, B′y, and B′z in frame K′?

(e) [4 pt] Consider explicitly a B field in the K frame caused by an
uncharged infinitely long and thin wire centered on the y-axis
(x, z) = (0, 0) which carries a current I in the +y direction. As-
sume that no polarizable materials are present, i.e., assume ϵr = 1
and µr = 1. What are B′(x′, y′, z′) and E′(x′, y′, z′) in the K′

frame, written as functions of the K′-coordinates? Where does E′

point?
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2. Consider a very long hollow cylinder made of iron that is placed with its
axis perpendicular to a uniform external magnetic inductionB0 = B0 x̂.
Assume the inner radius of the hollow cylinder is a and the outer radius
is b. Also assume the permeability µ of the iron is a constant. The goal
of this problem is to calculate the magnetic induction B inside the
hollow region (0 ≤ ρ ≡

√
x2 + y2 < a).

(a) [3 pt] Starting with Maxwell’s equations for static B and H fields
and assuming that there is no free current density, Jf = 0, prove
that the field H can be written as the negative gradient of a mag-
netic scalar potential ΦM that satisfies the Poisson equation with
an appropriate source term. For this particular problem the Pois-
son equation reduces to the Laplace equation except at the cylin-
der’s boundaries.

(b) [3 pt] Derive the appropriate boundary conditions to be satisfied
by the scalar potential ΦM and the magnetic field H at ρ = a and
ρ = b.

(c) [4 pt] Solve for the H field in the interior region ρ < a. Hint:
solve the Laplace equation for ΦM in the three regions 0 ≤ r < a,
a < r < b, and b < r < ∞, and appropriately match these
solutions at the cylinder’s boundaries. Show that for large µ,
(i.e., when µ → ∞) the iron provides complete shielding from the
magnetic field, i.e., H → 0 for ρ < a.

Hint:

∇2ΦM =
1

ρ

∂

∂ρ

(
ρ
∂ΦM

∂ρ

)
+

1

ρ2
∂2ΦM

∂ϕ2
+

∂2ΦM

∂z2
.

3



3. A very long straight conductor has a circular cross section of radius
R and carries a current I. Inside the conductor, there is a cylindrical
hole of radius a whose axis is parallel to the axis of the conductor and
a distance b from it (a + b < R). The goal of this problem is to show
that the magnetic induction B(x, y) inside the hole is uniform and to
calculate its value. Assume the wire of radius R is centered on the z
axis, i.e., at (x, y) = (0, 0) and the cylindrical hole of radius a is centered
at (x, y) = (b, 0). Assume the current I is uniformly distributed in the
conducting material.

(a) [3 pts]

Ignoring the hole, use Amperés Law to find the magnetic induc-
tion, BR(x, y), inside a homogeneous cylindrical wire of radius R
that carries a uniform current density JR = IR/πR

2 in the +z
direction.

(b) [4 pts] Ignoring the current in the wire of radius R assume an
imaginary wire of radius a located at (x, y) = (b, 0) carries a cur-
rent density Ja = Ia/πa

2 in the −z direction. Use Amperes Law
to find the magnetic induction, Ba(x, y), inside the imaginary wire
of radius a caused by Ja.

(c) [3 pts]

By adjusting the two current densities to have the same magni-
tude, and superimposing the two magnetic inductions, find the
resultant B(x, y) field inside the hole in the original conductor
that carries a current I described at the beginning of this prob-
lem.
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4. Consider a large flat interface at z = 0 between a dielectric and free
space. The region where z < 0 is filled with a uniform linear dielec-
tric material with a relative permittivity ϵr (equivalently a dielectric
constant ϵr). If the only free charge present is a point charge q > 0
situated a distance d from the origin at rq = (0, 0, d), where d > 0,
answer the following 5 questions.

To answer them you should look at the electric field as a sum of two
fields, a coulomb part Eq caused by the point charge q and a second
part Eb caused by the bound surface charge σb(x, y) located on the
z = 0 interface.

(a) [2 pts] Write two expressions for the z component of the total
electric field Ez = Ez

q +Ez
b , one just above the dielectric’s surface

and one just below the dielectric’s surface. The Ez
b part is directly

related to σb by Gauss’s law.

(b) [3 pts] Use the two electric fields from part (a) and the continuity
of the normal part of the displacement vector ϵEz to solve for
σb(x, y) as a function of the known coulomb field Ez

q (x, y, 0).

(c) [3 pts] Calculate the electric field at the position of the charge
q caused by the bound surface charge σb. You simply have to
integrate a superposition of coulomb fields. From symmetry the
resultant field points in the ±z direction.

(d) [2 pts] Show that this resultant bound charge field at (0, 0, d) can
be interpreted as the field of a single image charge q′ located at
point rq′ = (0, 0,−d). What is the value of q′?
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5. In this question a monochromatic linearly polarized plane wave is scat-
tered by a free electron. If the initial speed of the particle is non-
relativistic (i.e., β ≪ 1) and the frequency of the plane wave satisfies
hν ≪ mec

2, then the electron is accelerated by the plane wave’s elec-
tric field in accord with Newton’s 2nd law, but its speed remains non-
relativistic. Due to its acceleration, the electron emits radiation in all
directions thus scattering the original plane wave. See the figure.

(a) [2 pts] Assume the plane wave travels in the z-direction and is
polarized in the x-direction as shown in the figure. Compute the
acceleration, β̇(t) = v̇(t)/c, of the electron caused by the plane
wave’s electric field.

(b) [3 pts] Compute the electric field E, the magnetic inductionB, and
the Poynting vector S of the radiated wave. { Hint: In Gaussian
units EG = q[n̂ × (n̂ × β̇)]/(cR)|ret, BG = n̂ × E, and SG =
(c/4π)E×H. In SI units ESI = (1/4πϵ0)EG, BSI = (1/c)BG, and
SSI = E×H. }

(c) [3 pts] Use your results to compute the differential scattering cross
section

dσ(θ, ϕ)

dΩ
=

< S · dA >

| < S0 > |δΩ
.

In the above <> stands for a time average and | < S0 > | is the
magnitude of the time averaged Poynting vector of the incoming
plane wave. The detector area element dA subtends a solid angle
δΩ at the radiating electron and is typically of the form

dA = R2δΩ n̂.

(d) [2 pts] Integrate your differential cross section over all (θ, ϕ) di-
rections to obtain the total Thompson cross section σT .
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6. (a) [2 pts] In a homogeneous, linear and isotropic conducting ma-
terial whose electromagnetic properties (at low frequencies) are
described by constant (and real) values of the permittivity, per-
meability, and conductivity respectively ϵ, µ, and σ, show that
Maxwell’s equations require that the electric field satisfy the tele-
graph equation

∇2E− ϵµ
∂2E

∂2t
− σµ

∂E

∂t
= 0, (SI)

∇2E− ϵµ

c2
∂2E

∂2t
− 4πσµ

c2
∂E

∂t
= 0. (Gaussian)

(b) [3 pts] Given a linearly polarized plane wave of angular frequency
ω whose electric field is of the form

E(z, t) = Real
{
E0 e

i(kz−ωt)
}
x̂,

evaluate k2 as a function of ϵ, µ, σ, and ω.

(c) [2 pts] Find the real and imaginary parts of k assuming σ >> ωϵ.

(d) [3 pts] Using your results from (c) find the skin depth δ of the
conductor. The skin depth is defined by the depth at which the
wave’s amplitude decreases by e−1, i.e.,

|E(z + δ, t)|
|E(z, t)|

=
1

e
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