
1E & M Qualifier

January 2021

To insure that your work is given appropriate credit you MUST:

1. use only the blank answer paper provided,

2. use only the reference material supplied (Schaum’s Guides),

3. write only on one side of the page,

4. start each problem by stating your units e.g., SI or Gaussian,

5. put your alias (NOT YOUR REAL NAME) on every page,

6. when you complete a problem put 3 numbers on every page used for that problem as
follows:

(a) the first number is the problem number,

(b) the second number is the page number for that problem (start each problem with
page number 1),

(c) the third number is the total number of pages you used to answer that problem,

7. DO NOT staple your exam when done.



2Problem 1

Two concentric conducting cylinders are arranged as shown in the diagram, with R1 the
radius of the inner cylinder, R2 the radius of the outer cylinder, and L the length of the
cylinders. We’ll assume R1 < R2 � L.

(a) We place a charge of −Q on the inner cylinder and +Q on the outer cylinder. Explicitly
use Gauss’s Law to determine the electric field in the three regions (r < R1, R1 < r <
R2, and R2 < r). Assume the charge is uniformly distributed along the cylinders. [2
points]

(b) Use the electric field you just calculated to determine the potential difference between
the cylinders. [3 points]

(c) Use the potential difference you just calculated to determine the amount of work re-
quired to move an infinitesimal amount of charge dq from the inner cylinder to the
outer cylinder. [1 point]

(d) We can think of the energy stored on this capacitor as the amount of work required
to move a total charge Q from the inner cylinder to the outer cylinder. Use the work
required to move a charge dq to determine the total energy stored on this capacitor.
[2 points]

(e) Without doing any complex calculations, briefly discuss how your answers to these
questions would change if we inserted a dielectric with permittivity ε between the
cylinders (e.g. would they increase, decrease, or stay the same?). Include an explana-
tion for why those changes would happen. [2 points]



3Problem 2

A copper rod is sliding on two conducting rails that make an angle of 15◦ with respect to
each other, as in the drawing. The rod is moving to the right with a constant speed of 0.40
m/s. A 0.42T uniform magnetic field is perpendicular to the plane of the paper pointing
out of the page. A small resistor is included in one of the rails. This system is shown in the
diagram below.

(a) Determine the magnitude of the average emf induced in the triangle ABC during the
5.0s period after the rod has passed point A. [4 points]

(b) If the resistor has a resistance of 5.0 Ohms, what is the current passing through the
resistor and which way does that current flow? Assume the resistance of the rails and
the rod are all negligible. [3 points]

(c) As current flows through the resistor, it dissipates energy. Where does that energy come
from during this process? Briefly describe the flow of energy through this system. [3
points]



4Problem 3

Consider a parallel-plate capacitor with circular plates of radius R. A voltage of
V (t) = Vo sinωt is applied across the capacitor by connecting a wire to each of the plates. We
will use cylindrical coordinates with the z-axis passing through the center of both capacitor
plates. The magnetic field between the plates is measured to be in the azimuthal direction.
Its magnitude is found to be proportional to s (the distance from the z-axis) and proportional
to cosωt. The distance between the plates is d and the material between the plates is a non-
magnetic linear dielectric with a permittivity of 3εo.

R

d

(a) Find the magnitude and direction of the electric field between the plates. [2 points]

(b) Use the Ampere-Maxwell equation to find the proportionality constant that relates B
to s cosωt. [3 points]

(c) Use the Ampere-Maxwell equation and your answer to part b to find the current
through the wires that are attached to the capacitor. [3 points]

(d) Find the magnitude and direction of the Poynting vector for the capacitor. Then find
the power that flows into the capacitor. [2 points]



5Problem 4

Consider an interface between a high index of refraction (n1) medium and a low index of
refraction medium (n2) such that n1 > n2. A plane wave with frequency ω is incident from
the high index medium on such an interface at an angle θI , as shown in the figure below.
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(a) Use Snell’s law to show that when θI = θc ≡ sin−1(n2/n1) the angle of the transmitted
wave is θT = 90◦. [1 point]

(b) Consider now the case in which θI > θc. Show that for this condition the transmitted
field takes the form

~ET (~r, t) = ~E0T e
−κzei(kx−ωt), (1)

where

κ =
ω

c

√
(n1 sin θI)2 − n2

2 and k =
ωn1

c
sin θI ,

with c representing the speed of light. [Hint: use Snell’s law even though θT can no
longer be interpreted as an angle in this case.] [3 points]

(c) What is the physical meaning of the form of the transmitted field in part (b)? [1 point]

(d) For an electric field polarized perpendicular to the plane of incidence (s-polarized light),
show that when θI > θc the real transmitted fields take the form

~ET (~r, t) = E0T e
−κz cos(kx− ωt)ŷ,

~BT (~r, t) =
E0T

ω
e−κz[κ sin(kx− ωt)x̂+ k cos(kx− ωt)ẑ],

where the amplitude E0T is taken to be real and the hat indicates a unit vector. [2
points]

(e) For the fields in part (d), calculate the Poynting vector and show that on average no
energy is transmitted in the z direction. [3 points]



6Problem 5

You are in a spaceship and fly by your friends standing on an asteroid. Your friends are
using some clever technology to generate a homogenous, time-independent, purely magnetic
field Bx = 0.1 T, By = 0.2 T, Bz = 0.5 T in their rest-frame K and there is no electric field
in their rest-frame. Consider your own rest-frame K’, from which you see the asteroid with
your friends fly by at a velocity of vK = −0.75 c k̂. Here, k̂ is a unit vector pointing in the
z-direction and c the speed of light in vacuum. For this problem, use the following metric:
g00 = −1, g11 = g22 = g33 = 1, and gij = 0 for i 6= j.

Hints: Use the following fields in terms of potentials and 4-vector potential

E = −∇V − ∂A

∂t
B = ∇×A

Aµ = (V/c,Ax, Ay, Az)

(a) Explicitly derive the field strength tensor F µν = ∂Aν

∂xµ
− ∂Aµ

∂xν
in frame K in matrix form

from the 4-vector potential Aµ. Hint: Make use of the fact that in frame K, there is
no electric field and the magnetic field is time-independent. [2 points]

(b) Find the matrix form of a Lorentz boost Lαβ in the positive z-direction that would bring
you into the frame K’ from which frame K is seen to move in the negative z-direction
with velocity vK = −0.75 c k̂. At time zero, the origins of both frames overlap, and
the clocks are synchronized then. [2 points]

(c) Explicitly verify that the boost Lαβ leaves the metric g invariant. HINT: evaluate the
matrix product LT g L and show that it is equal to g. [2 points]

(d) Apply the boost Lαβ to F µν to find F ′µν , the field strength tensor as seen in the moving
frame K’. [2 points]

(e) What are the magnetic field components B′x, B
′
y, and B′z, seen in frame K’, as functions

of the magnetic field components Bx, By, and Bz, seen in frame K? What are the
numerical values you would measure in your spaceship, in Tesla? [1 point]

(f) What are the electric field components E ′x, E
′
y, and E ′z seen in frame K’, as functions

of the magnetic field components Bx, By, and Bz, seen in frame K? What are the
numerical field values you would measure in your spaceship, in Volts per meter? [1
point]



7Problem 6

(a) Write down the four Maxwell equations in three-vector notation. [2 points]

(b) Write ~E and ~B in terms of the potentials Φ and ~A. What advantage is gained by use
of the potentials? [2 points]

(c) Re-write Gauss’ law and Ampere’s law in terms of the potentials. Hint: ~∇× (~∇×~a) =
~∇(~∇ · ~a)− ~∇2~a. [2 points]

(d) Identify the Lorenz gauge condition and use it to decouple these equations. [1 point]

(e) Write down the Green function for the wave equation ~∇2G(~x, t; ~x′, t′)− 1
c2
∂2G(~x,t;~x′,t′)

∂t2
=

−4πδ3(~x− ~x′)δ(t− t′) [1 point]

(f) Use the retarded Green function to write down the solutions Φ and ~A as integral
equations. [1 point]

(g) Explain how these solutions exhibit causality in electrodynamics. [1 point]


