
Quantum Mechanics

Qualifying Exam - January 2016

Notes and Instructions

• There are 6 problems. Attempt them all as partial credit will be given.

• Write on only one side of the paper for your solutions.

• Write your alias on the top of every page of your solutions.

• Number each page of your solution with the problem number and page
number (e.g. Problem 3, p. 2/4 is the second of four pages for the
solution to problem 3.)

• You must show your work to receive full credit.

Possibly useful formulas:

Spin Operator

~S =
h̄

2
~σ, σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0
0 1

)

(1)

In spherical coordinates,

∇2ψ =
1

r

∂2

∂r2
rψ +

1

r2 sin θ

∂

∂θ
(sin θ

∂ψ

∂θ
) +

1

r2 sin2 θ

∂2

∂φ2
ψ. (2)

Harmonic oscillator wave functions

u0(x) = (mω
πh̄ )1/4e−

mωx2

2h̄

u1(x) = (mω
πh̄ )1/4

√

2mω
h̄ xe−

mωx2

2h̄
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Problem 1: Clebsh-Gordon coefficients (10 pts)

A system of two particles with spins s1 = 3
2 and s2 = 1

2 is described by the
Hamiltonian

H = αS1 · S2

with α a constant and Si (i = 1, 2) is the spin operator of the i-th particle.

a) What are the allowed values for the quantum numbers of the total
spin S = S1 + S2? (2 Points)

b) Calculate the energy levels of the Hamiltonian. (2 Points)

c) Let us define the basis of eigenstates of the S2
1, S2

2, S1z, S2z operators,
|s1s2; m1m2〉, where m1 and m2 are the quantum numbers of the projection
operators S1z and S2z respectively. The system at time t = 0 is initially in
the state

∣

∣

∣

∣

s1s2;
1

2
,
1

2

〉

.

Find the state of the system at times t > 0. (4 Points)

d) Assuming the initial state above, what is the probability of finding
the system in the state

∣

∣

∣

∣

s1s2;
3

2
,−1

2

〉

at t > 0? (2 Points)
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Figure 1: U(x)

Problem 2: Perturbation to a Harmonic Oscillator
(10 pts)

Consider a particle of mass, m, moving in a 1-dimensional potential (see
Figure 1)

U(x) = λx4 − kx2.

λ and k are positive, and λ ≪ (k3/2m1/2)
4h̄ . Approximate the potential near

the minima by a simple harmonic oscillator. Here are some useful integrals:
∫ ∞

−∞

x4e−A(x−a)2dx =
1

4A5/2
(3 + 4a2A(3 + a2A))

√
π, for A > 0

∫ ∞

−∞

x4e−A(x−a)2e−A(x+a)2dx =
3

16A5/2
e−2a2A

√

π

2
, for A > 0

a. Sketch the wavefunctions of the state |ψR〉 which is defined as the state
when the particle is found at x > 0 and the state |ψL〉 which is the state
when the particle is found at x < 0. Only consider the lowest energy states
near the minima. (2 Points)

b. Since the potential is invariant under reflection about the origin, the
stationary states must be eigenstates of the parity operator. Express the
ground-state and first excited state wavefunctions in terms of |ψR〉 and |ψL〉.
(2 Points)

c. Estimate the energies of the 2 lowest states using the approximations al-
ready described. Hint: use the space representation of the harmonic oscilla-
tor wavefunctions and carry out the integrals to find the perturbed energies.
(6 Points)
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Problem 3: Identical particles (10 pts)

Two non-interacting particles of mass m are trapped in a 1-dimensional
infinite box of length L situated between x = 0 and x = L. (In the cases
you are considering fermions, assume them to all be spin up.)

(a) [1 points] Write down the single particle energy eigenvalues and wave-
functions.

(b) [1 points] Write down the energy eigenvalues and wavefunctions for
two distinguishable particles. Label the states by n1 for particle 1 and
n2 for particle 2.

(c) [2 points] An energy measurement of the two identical particle system
yields E = h̄2π2/mL2. Write down the state vector/wave function of
the system.

(d) [2 points] Suppose instead the energy of the two identical particle
system is measured to be E = 5h̄2π2/mL2. What is the wave function?
Hint: there are two possibilities.

(e) [2 points] Show that the fermion state you found in part (d) is an
eigenfunction of the Hamiltonian, with the appropriate eigenvalue.

(f) [1 points] Write down the wavefunction for two identical spin-up fermions
in the n1 = 2 and n2 = 2 state.

(g) [1 points] If instead you had three particles in the orthonormal states
Ψ1,Ψ2, and Ψ3, construct the three particle state for identical fermions.
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Problem 4: Matrix Mechanics (10 pts)

Consider a system governed by a Hamiltonian H, with an observable C.
The Hamiltonian is represented in the |ei〉 basis as:

H = h̄ω





1 0 0
0 0 1
0 1 0





Where |e1〉 =





1
0
0



, |e2〉 =





0
1
0



, |e3〉 =





0
0
1



.

The eigenvalues and eigenvectors of H are

|E1 = −h̄ω〉 = 1
√

2





0
1
−1



, |E2 = h̄ω, 1〉 = 1
√

2





0
1
1



, |E2 = h̄ω, 2〉 =





1
0
0



.

Let C be represented in the |ei〉 basis as

C =





0 0 2
0 1 0
2 0 0





At t=0, the system is in the state: |Ψ(t = 0)〉 = 1√
2
|e1〉 + 1√

2
|e2〉

a) At time t=0, the observable C is measured. What results are possible
and with what probabilities? (2 pts)

b) Determine the representation of the time evolution operator U(t, t0 = 0)
in the |ei〉 representation. (2 pts)

c) Determine |Ψ(t)〉 in the |ei〉 basis. (2 pts)

d) If C is measured at some later time t, what results are possible and with
what probabilities? (2 pts)

e) Are your probabilities time dependent or time independent? Explain (2
pts)

5



Problem 5: Magnetic Moments and Spin (10 pts)

Consider a spin 1/2 particle with a magnetic moment. We can write the interaction
between the spin and an external magnetic field using the Hamiltonian:

H = −γ ~B · ~S (1)

where ~B is the external field, ~S is the spin operator for the particle, and γ is a real positive
constant. In this problem, use the usual basis states that are eigenstates of Sz

Szχ± = ± h̄

2
χ±, χ+ =

„

1
0

«

, χ− =

„

0
1

«

(2)

For this problem, assume the magnetic field lies in the x-z plane:

~B = Bxêx + Bz êz (3)

(a) [1 pt] Solve for the eigenenergies for the Hamiltonian, showing your work. Explain
the physics of your results.

(b) [2 pts] Any state of the spin can be written in the χ± basis as:

Ψ(t) =

„

α(t)
β(t)

«

(4)

Using the Hamiltonian, derive the first-order coupled differential equations that
give the time dependence for α(t) and β(t). In other words, derive the equations
for α̇(t) and β̇(t).

(c) [2 pts] Show that you can re-write your results from part (b) as two uncoupled
second-order differential equations:

α̈(t) = −γ2B2
T

4
α(t)

β̈(t) = −γ2B2
T

4
β(t) (5)

where BT =
√

B2
x + B2

z is the magnitude of the total magnetic field. How is this
result related to what you found in part (a)?

Of course, the solutions to these equations are:

α(t) = C1 cos(ωt) + C2 sin(ωt)

β(t) = C3 cos(ωt) + C4 sin(ωt) (6)

with ω = γBT

2
.

(d) [3 pts] Consider the situation where the spin is in the spin-up Sz state χ+ at time
t = 0. Using the boundary conditions at time t = 0, determine the values for the
constants C1, C2, C3, C4 that will solve for the time-dependence of the state. Re-
member that the equations in part (c) are second-order, so you need two boundary
conditions at t = 0 for each.

(e) [2 pt] Write down the time-dependent probabilities, P± of the spin being in the spin-
up and spin-down Sz states. Show that your results are correct in the two cases
where Bx = 0 and Bz = 0.
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Problem 6: Electron in a Finite Square Well (10
pts)

Consider an electron of energy E incident from x=−∞ on a symmetric one-
dimensional square well of depth V0 and width L.

V (x) =







0, x < -L/2
−V0, -L/2 < x < L/2
0, x > L/2

a) Write down the solutions to the time-independent Schrodinger Equation
for this situation. There should be five integration constants (2 points)

b) Apply boundary conditions to find the probability that the electron is
transmitted past the finite well (4 points)

c) For what values of E is there a 100% probability for transmission past
the well? (2 points)

d) Consider a potential well with V0 large enough for there to be two bound
states. For this well, what is the smallest electron energy (E > 0) for which
there is a 100% probability for transmission? Your answer will depend on
V0 and other parameters in the problem. (2 points)
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