
Quantum Mechanics
Qualifying Exam - Spring 2020

Notes and Instructions

• There are 6 problems. Attempt them all as partial credit will be given.

• Write on only one side of the paper for your solutions.

• Write your alias on the top of every page of your solutions.

• Number each page of your solution with the problem number and page number (e.g.
Problem 3, p. 2/4 is the second of four pages for the solution to problem 3.)

• You must show your work to receive full credit.

Possibly useful formulas:
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Harmonic oscillator wave functions
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Problem 1: Quantum Mechanical Particle (10 pts)

Consider a particle with mass m and charge e, in a magnetic field ~B = ∇ × ~A. The
Hamiltonian of the particle is given by

H =
1

2m
(~p − e

c
~A(~r))2 , (3)

where ~p denotes the momentum of the particle and ~r denotes its position. Take ~A = −B yx̂,
where B is the magnetic field strength and x̂ denotes the unit vector along the x-direction.

Now let us do quantum mechanics with this particle.

(a) [3 pt] Show that the quantum mechanical operators p̂x and p̂z are constants of the
motion.

(b) [3 pt] Suppose you were to write down the energy eigenfunction of the particle in the
following way:

|ψ(x, y, z)〉 = f(x, px, z, pz) |φ(y)〉 (4)

where f is a function that contains the entire x and z dependence of the state of the
particle while px and pz are the constant values of the operators p̂x and p̂z, respectively.
Using part (a), find the function f .

(c) [4 pt] Derive the eigenvalue equation satisfied by |φ(y)〉 and obtain the energy eigen-
values of the quantum mechanical particle.



Problem 2: Perturbation Theory (10 pts)

Consider a particle of mass m in a 1D infinite square well of width a:

V (x) = 0, 0 ≤ x ≤ a V (x) =∞, x < 0, x > a. (5)

a) [1 pt] Derive the energy eigenvalues and eigenstates for the particle. Show how you
calculated your results. Be sure to normalize your states.

You might find useful the integral:∫ nπ

0
sin2 y dy =

nπ

2
(6)

b) [1 pt] The quantum well is perturbed by an external potential of the form:

V1(x) = ε
x

a
(7)

where ε is a positive energy.
Determine the shift in energy of the nth eigenstate of the unperturbed well, ψn(x), to

first order in ε. You may not have to do any complicated calculations, but you need to
justify your answer.

c) [2 pts] Next, instead of the perturbation from part b, let the perturbation be of the
form:

V2(x) = ε a δ
(
x− a

2

)
(8)

where ε is a constant energy and δ(x) is the usual Dirac delta function.
Determine the shift in energy of the nth eigenstate of the unperturbed well, ψn(x), to

first order in ε.

d) [3 pts] Using the perturbation V2(x), solve for an expression for the second order
energy shift, in ε, of the nth eigenstate of the unperturbed well, ψn(x). Your answer should
be given as a sum, but you should simplify your result as much as possible.

e) [3 pts] Using the results from part d, determine the magnitude of the second-order
energy shifts to the n = 1 and n = 2 unperturbed energy eigenstates. If you can’t determine
an exact answer, give an approximation to the energy shifts. Your answers should be in
terms of m, a, ε, and constants.

Note that if you give an approximation to either of the energy shifts you should justify
the approximations that you make.



Problem 3: Identical particles (10 pts)

Three particles can exist each one in any of the three distinct 1-particle states |n〉, with
n = 1, 2, 3. We define ψn(xi) ≡ 〈xi|n〉 as the wavefunction of particle i = 1, 2, 3 in the n
state. Assume that the particles need not be in different states.

a) [2 pts] If the particles are distinguishable, how many different three-particle states
are available? Justify your answer.

b) [4 pts] If they are identical bosons, write down all possible three-particle state wave-
functions.

c) [2 pts] Now assume that they are identical fermions. Write down all possible three-
particle state wavefunctions.

d) [2 pts] Suppose that three electrons occupy a 2p shell of an atom (` = 1), each
one having the same spin. What is the total magnetic quantum number of the allowed
three-particle states? Justify.



Problem 4: Delta function and Atomic Model (10 pts)

Consider a delta-function potential V (x) = −V0δ(x).

a) [1 pts] Calculate the bound state energy for this potential

b) [2 pts] Calculate the normalized bound state wave function and provide a sketch of
the wave function.

Now consider a different potential. An approximate model for an atom near a wall is to
consider a particle moving under the influence of the one-dimensional potential given by

V (x) =

{
−V0δ(x), x > -d
∞, x < -d

As shown below

-d	

V(x)	∞	

0	 x	

-V0δ(x)	

c) [3 pts] Find the transcendental equation for the bound state energies

d) [3 pts] What is the exact condition on V0 and d for the existence of at least one
bound state. (Sketching the functions on either side of the equal sign of your transcendental
equation is useful.)

e) [1 pt] Show that when the delta function is far away from the wall, the bound state
energy matches your answer to part a).



Problem 5: Simple Harmonic Oscillator (10 pts)

Possibly useful integral: ∫ ∞
−∞

e−(ax2+bx+c) =

√
π

a
e( b2−4ac

4a
) (9)

1) [5 pts] Consider a simple harmonic oscillator in one dimension with Hamiltonian

Ĥ0 =
p̂2

2m
+
mω2

2
x̂2 (10)

a) [5 pts] The ground state wave function can be expressed as ψ0 (x) = Ae−Bx
2
. Derive

the constants A and B, as well as the energy associated with this state.

b) [3 pts] At time t = 0, an electric field with magnitude E is turned on, perturbing the
Hamiltonian with a term given by

Ĥ ′ = qEx̂ (11)

Define a new operator x̂′ ≡ x̂ + qE
mω2 . Calculate x̂′2, and express the Hamiltonian in terms

of this result. What is the new ground state wavefunction and energy?

c) [2 pts] Assuming the oscillator was in the ground state for t < 0, what is the proba-
bility for the particle to be found in the grade state at t = 0?



Problem 6: Spin-1/2 Interferometer (10 pts)

Consider the experiment depicted in the figure below. All directions are given with respect
to the axes shown on the right hand side.

On the left is a source that can emit single spin-1/2 particles, one at a time, each in
the state sx = +1/2, and each with the same linear momentum. The particles pass one
by one through a sequence of Stern-Gerlach magnets that form an interferometer. Each
Stern-Gerlach magnet is oriented with its field gradient parallel or anti-parallel to ẑ.

There is an interaction region on the upper path of the interferometer, as shown. Initially
the interaction region is empty and when the spin detector on the far right measures each
particle’s spin in the x-direction it measures sx = +1/2.
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SG apparatus 1
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z
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(a) [2 pts] We place equipment in the interaction region in the upper arm of the interfer-
ometer to measure each particle’s spin along the z-axis. (Assume that the detector is
perfect and does not miss any particles entering the upper arm of the interferometer).
State what fraction of the particles leaving the source will be found in the upper arm
of the interferometer, what values of sz would be detected there, and the relative
probability of each value of sz.

(b) [1 pt] We remove the spin detector from the interaction region and replace it with a
device that measures with certainty whether or not each particle traverses the upper
arm of the interferometer, with no effect on the particle’s spin or momentum. We do
not measure its spin. In the case that a particle is observed to pass through the upper
arm, what is the probability that the spin detector on the far right will measure an
eigenvalue of sx = −1/2?

(c) [1 pt] In the case that a particle is was not observed to pass through the upper arm,
but arrived at the spin detector on the far right, what is the probability that the spin
detector on the far right will measure an eigenvalue of sx = −1/2?

(d) [6 pts] Now suppose that the interaction region instead rotates the spin about the ẑ
axis by an angle θ such that the spinor transform by the matrix Rz(θ)

Rz(θ) =

[
e−iθ/2 0

0 eiθ/2

]
.

Derive the probability of measuring sx = 1/2 at the spin detector.


