Quantum Mechanics
Qualifying Exam — January 2022

Notes and Instructions:

There are 6 problems and 7 pages.

Be sure to write your alias at the top of every page.

Number each page with the problem number, and page number of your solution (e.g.
“Problem 3, p. 1/4” is the first page of a four page solution to problem 3).

You must show all your work.

Possibly useful formulas:

Pauli spin matrices:

(01 (0 —i (10
2=\10) %=\ o) 227 \o0 -1

One-dimensional simple harmonic oscillator operators:

To= QZM(M&*), P = —i\/@(d—&*), [a,af] =1,
an) = vnln—1), and a'ln) = Vn+1jn+1).
The Hermite polynomials:
Hy(y) = 1, Hi(y) = 2y, H(y) = 4y’ -2
H) = (1) e

Spherical Harmonics:

Yo(0.0) = /4= Y520, ) = |/ g5 sin® 0 e*%¢
= Fy / sm g etie Yil = Fy / sin 6 cos 6 e®
Y2(0,0) =/ 1 cos Y2(0.9) =/ 17 (3cos6 — 1)

Angular momentum raising and lowering operators:
L, = L,*xiL,
Lo|t,m) = R+ 1) —m(m+ D]Y?l,m+1)
L_|t;m) = hl{l+1) —m(m —D]Y2|t,m—1)

Gaussian Integral:

I(a) = /OO e dx = (7)a)"/?, a>0

—00

where « is usually chosen to be real.



PROBLEM 1: Harmonic Oscillator

Consider a one-dimensional quantum harmonic oscillator of mass m and angular frequency
w. Its Hamiltonian is given by

where 2 is the coordinate and p is the momentum operator.
The annihilation operator is given by

R mw n ) R
a= Z
2h v Qmwhp

(a) (1 point) Show that [a,a'] = 1.
(b) (2 points) Calculate (H), (&), (p), (22), and (p?) in the eigenstate |n).
(c¢) (2 points) Consider the state vector at time t = 0

1
V2

Find the state vector [i(t)) at time ¢ (expressed in terms of |0) and |1)) and (Z) and
(2%).

(d) (2 points) Consider the state vector at time ¢t = 0

[%(0)) (10) +11))

1

[¥(0)) = —=(10) +12))

Sl

2
and find (z) as a function of ¢.

(e) (3 points) A un-normalized energy eigenfunction of the harmonic oscillator can be writ-
ten as ,
Vo(x) = (22° — 3z)e /2.
Calculate two other un-normalized eigenfunctions which are closest in energy to 1,.
Show all work. (To make the problem easier to solve, you can let h =m = w = 1)



PROBLEM 2: Spin—% Interferometer

(a)

(b)

(2 points) A single spin 1/2 particle has been measured to point along the x-axis with
eigenvalue s, = 1/2. What is the probability that a subsequent measurement would
find the spin to be parallel to the z-axis?

(2 points) Suppose that instead of measuring, you introduce a device that can spatially
separate |s, = 1/2) according to s, components, sending |s, = +1/2) upward and
|s, = —1/2) downward. Assuming the two s, components are now spatially separated
far enough that the wavefunctions do not overlap, describe what a s, measurement
would find in this situation, both in terms of spin and spatial location.

(3 points) Now imagine that instead of measuring the separated components, we in-
troduce a mechanism that causes a rotation about Z on only |s, = +1/2), without

measuring it, according to
e—i0/2 0
Rz(e) = < 0 ei0/2 :

What are the probability amplitudes of |s, = +1/2) and |s, = —1/2) following this
operation?

(3 points) After the rotation with R,(#), let us bring the two components back to the
same spatial location, perfectly overlapping the state vectors and the wavefunctions.
Calculate the probability of measuring s, = 1/2 as a function of 6.



PROBLEM 3: Identical particles

Consider two non-relativistic point particles, each with mass m, in one-dimensional space
interacting through the é-function potential

V(21 — 20) = gd(21 — 22), (1)

where ¢ is a constant and z; and 2, denote the position coordinates of particle 1 and particle
2, respectively.

Note: Parts (a)-(d) do NOT consider the spin degree of freedom.
(a) (0.5 points) What units does the constant g have?

(b) (2.5 points) Write down the two-particle Hamiltonian H. Using the relative coordinate z,
=2 2, (2)
and the center-of-mass coordinate 7,

Zl—|—22

Z = ,
2

(3)

rewrite the two-particle Hamiltonian H in terms of the relative and center-of-mass coordi-
nates, i.e., write H as H,. +Hcm, where H,. and H,, denote, respectively, the center-of-mass
and relatlve Hamiltonian, and argue concisely or show that the relative and center-of-mass
degrees of freedom separate.

(c) (1.5 points) Determine the complete set of eigenstates for the center-of-mass Hamilto-
nian.

(d) (3 points) This part of the problem considers the relative Hamiltonian. We want to
determine whether or not H, supports odd-parity bound states. To address this problem,
define the terms ”even parity” and ”odd parity.” Then define concisely what the condition for
a bound state is. Last, argue why H,.; does not support an odd-parity bound state.

(e) (2.5 points) Let us denote the even-parity bound state of H, by ¥22474(z) —z,); there exists
exactly one such bound state for negative g (you do NOT have to derive this!). Assuming that
the two particles are spin-1/2 fermions, write down the lowest energy eigen state for negative
g for a spin-singlet and for a spin-triplet state; in doing so, account for the center-of-mass,

relative, and spin degrees of freedom.



PROBLEM 4: Stationary Perturbation Theory

The energy eigenstates of a particle of mass m in a one dimensional potential satisfy

HU, (z) = {—;—m% + Vo(x) + Vl(a:)} U, (x) = E,V,(x)

where

0 for0O<z< L
V pr—
(@) { oo otherwise

where L is a positive constant, and

Vi(z) = U 5($—§)

where §(z) is a Dirac delta function and U; > 0 is a constant giving the strength of the
potential. We will look at this problem treating V;(x) as a perturbation.

(a) (1 point) In the unperturbed (U; = 0) case, what are the eigenenergies and normalized
energy eigenfunctions? Denote these by E() and ¥ () respectively.

(b) (2 point) Solve for the first order correction to the ground state energy, E{l).

(c
(2)

) )

) (3 point) Solve for the first order correction to the ground state wavefunction, \Ifgl)(z).
(d) (3 point) Solve for the second order correction to the ground state energy, E;”.

)

(e) (1 point) Sketch the exact ground state wavefunction for when the perturbation is mod-

erately strong compared to the ground state energy, UyL ~ E{O) . Your answer need not
be numerically precise, but should be qualitatively correct.

Your final expressions in your answers above may involve sums, but should not involve
any unevaluated integrals.



PROBLEM 5: Generalized Uncertainty Principle
The normalized wave function of a one-dimensional particle is
(@) = ¥(x) = N [0(~x) + e 0(x)]

for some real parameter A > 0 and state vector |¢)). Here 0(z) is the step function and the
normalization constant N is real and positive.

(a) (1 point) What is the normalization constant N7
(b) (2 point) Calculate the expectation values of £%: (2?).

(¢) (2 point) Find the momentum space wave function ¢(p)
¢(p) = (pl¢) -

(d) (2 point) Calculate the expectation values of p*: (p?).

(e) (3 point) Determine the uncertainty relation AzAp with () =0 and (p) =0 .



PROBLEM 6: Angular Momentum Operator
Consider the standard angular momentum operators and basis states:

L2|€, m,) = 0L+ 1) h2|€, m.), L.|¢,m,) =m,h|{,m,) (4)

The angular momentum raising and lowering operators are very useful for calculations of
angular momentum properties. These are defined as:

Li=L,+ilL, (5)

Lallm.) = \JU(+ 1) — mu(m.£1) hlf,m, £ 1) (6)

For this problem, consider the sub-space of Hilbert space with £ = 1. The L, basis states
can be defined as |m,) with m, =1, 0, —1

(a) (2 point) Using the raising and lowering operators, show that (m,|L.|m.) = 0 and
(m;|Ly|m,) = 0.

(b) (2 points) Calculate the matrix elements (m,|Ly|n,) of the raising and lower operators
for all m, and n, states.

Use your answers to write down the 3 x 3 matrix representations of these two operators.

(¢) (1 point) Show from your previous results that the raising and lowering operators are
non-Hermitian but the operators L, and L, are (of course) Hermitian.

(d) (2 points) Solve for the eigenvalues and eigenvectors of the operator L,.

(e) (3 points) Consider the state

1
W]) = % (|mz = 1> + 2|mz = 0)) (7)

What are the possible outcomes and probabilities for a measurement of L, for the state

[¥)?



