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Quantum Mechanics
Qualifying Exam – January 2022

Notes and Instructions:

• There are 6 problems and 7 pages.

• Be sure to write your alias at the top of every page.

• Number each page with the problem number, and page number of your solution (e.g.
“Problem 3, p. 1/4” is the first page of a four page solution to problem 3).

• You must show all your work.

Possibly useful formulas:

Pauli spin matrices:

σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0
0 −1

)

One-dimensional simple harmonic oscillator operators:

x̂ =

√

h̄

2mω
(â+ â†), p̂ = −i

√

h̄mω

2
(â− â†),

[

â, â†
]

= 1,

â|n〉 =
√
n|n− 1〉, and â†|n〉 =

√
n+ 1|n+ 1〉 .

The Hermite polynomials:

H0(y) = 1, H1(y) = 2y, H2(y) = 4y2 − 2

Hn(y) = (−1)ney
2 ∂n

∂yn
e−y2

Spherical Harmonics:

Y 0
0 (θ, ϕ) =

√

1
4π

Y ±1
1 (θ, ϕ) = ∓

√

3
8π sin θ e±iϕ

Y 0
1 (θ, ϕ) =

√

3
4π cos θ

Y ±2
2 (θ, ϕ) =

√

15
32π sin2 θ e±2iϕ

Y ±1
2 (θ, ϕ) = ∓

√

15
8π sin θ cos θ e±iϕ

Y 0
2 (θ, ϕ) =

√

5
16π (3 cos2 θ − 1)

Angular momentum raising and lowering operators:

L± = Lx ± i Ly

L+|ℓ,m〉 = h̄[ℓ(ℓ+ 1)−m(m+ 1)]1/2|ℓ,m+ 1〉
L−|ℓ,m〉 = h̄[ℓ(ℓ+ 1)−m(m− 1)]1/2|ℓ,m− 1〉

Gaussian Integral:

I0(α) =
∫ ∞

−∞
e−αx2

dx = (π/α)1/2 , α > 0

where α is usually chosen to be real.
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PROBLEM 1: Harmonic Oscillator

Consider a one-dimensional quantum harmonic oscillator of mass m and angular frequency
ω. Its Hamiltonian is given by

Ĥ =
p̂2

2m
+

1

2
mω2x̂2 ,

where x̂ is the coordinate and p̂ is the momentum operator.
The annihilation operator is given by

â =

√

mω

2h̄
x̂+

i√
2mωh̄

p̂

(a) (1 point) Show that [â, â†] = 1.

(b) (2 points) Calculate 〈Ĥ〉, 〈x̂〉, 〈p̂〉, 〈x̂2〉, and 〈p̂2〉 in the eigenstate |n〉.

(c) (2 points) Consider the state vector at time t = 0

|ψ(0)〉 = 1√
2
(|0〉+ |1〉)

Find the state vector |ψ(t)〉 at time t (expressed in terms of |0〉 and |1〉) and 〈x̂〉 and
〈x̂2〉.

(d) (2 points) Consider the state vector at time t = 0

|ψ(0)〉 = 1√
2
(|0〉+ |2〉)

and find 〈x̂〉 as a function of t.

(e) (3 points) A un-normalized energy eigenfunction of the harmonic oscillator can be writ-
ten as

ψa(x) = (2x3 − 3x)e−x2/2 .

Calculate two other un-normalized eigenfunctions which are closest in energy to ψa.
Show all work. (To make the problem easier to solve, you can let h̄ = m = ω = 1)
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PROBLEM 2: Spin-1
2
Interferometer

(a) (2 points) A single spin 1/2 particle has been measured to point along the x-axis with
eigenvalue sx = 1/2. What is the probability that a subsequent measurement would
find the spin to be parallel to the z-axis?

(b) (2 points) Suppose that instead of measuring, you introduce a device that can spatially
separate |sx = 1/2〉 according to sz components, sending |sz = +1/2〉 upward and
|sz = −1/2〉 downward. Assuming the two sz components are now spatially separated
far enough that the wavefunctions do not overlap, describe what a sx measurement
would find in this situation, both in terms of spin and spatial location.

(c) (3 points) Now imagine that instead of measuring the separated components, we in-
troduce a mechanism that causes a rotation about ẑ on only |sz = +1/2〉, without
measuring it, according to

Rz(θ) =

(

e−iθ/2 0
0 eiθ/2

)

.

What are the probability amplitudes of |sz = +1/2〉 and |sz = −1/2〉 following this
operation?

(d) (3 points) After the rotation with Rz(θ), let us bring the two components back to the
same spatial location, perfectly overlapping the state vectors and the wavefunctions.
Calculate the probability of measuring sx = 1/2 as a function of θ.
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PROBLEM 3: Identical particles

Consider two non-relativistic point particles, each with mass m, in one-dimensional space
interacting through the δ-function potential

V (z1 − z2) = gδ(z1 − z2), (1)

where g is a constant and z1 and z2 denote the position coordinates of particle 1 and particle
2, respectively.

Note: Parts (a)-(d) do NOT consider the spin degree of freedom.

(a) (0.5 points) What units does the constant g have?

(b) (2.5 points) Write down the two-particle Hamiltonian Ĥ . Using the relative coordinate z,

z = z1 − z2, (2)

and the center-of-mass coordinate Z,

Z =
z1 + z2

2
, (3)

rewrite the two-particle Hamiltonian Ĥ in terms of the relative and center-of-mass coordi-
nates, i.e., write Ĥ as Ĥrel+Ĥcm, where Ĥrel and Ĥcm denote, respectively, the center-of-mass
and relative Hamiltonian, and argue concisely or show that the relative and center-of-mass
degrees of freedom separate.

(c) (1.5 points) Determine the complete set of eigenstates for the center-of-mass Hamilto-
nian.

(d) (3 points) This part of the problem considers the relative Hamiltonian. We want to
determine whether or not Ĥrel supports odd-parity bound states. To address this problem,
define the terms ”even parity” and ”odd parity.” Then define concisely what the condition for
a bound state is. Last, argue why Ĥrel does not support an odd-parity bound state.

(e) (2.5 points) Let us denote the even-parity bound state of Ĥrel by ψ
bound
even (z1−z2); there exists

exactly one such bound state for negative g (you do NOT have to derive this!). Assuming that
the two particles are spin-1/2 fermions, write down the lowest energy eigen state for negative
g for a spin-singlet and for a spin-triplet state; in doing so, account for the center-of-mass,
relative, and spin degrees of freedom.
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PROBLEM 4: Stationary Perturbation Theory

The energy eigenstates of a particle of mass m in a one dimensional potential satisfy

ĤΨn(x) =

{

− h̄2

2m

∂2

∂x2
+ V0(x) + V1(x)

}

Ψn(x) = EnΨn(x)

where

V0(x) =
{

0 for 0 < x < L
∞ otherwise

where L is a positive constant, and

V1(x) = U1 δ
(

x− L

2

)

where δ(x) is a Dirac delta function and U1 ≥ 0 is a constant giving the strength of the
potential. We will look at this problem treating V1(x) as a perturbation.

(a) (1 point) In the unperturbed (U1 = 0) case, what are the eigenenergies and normalized
energy eigenfunctions? Denote these by E(0)

n and Ψ(0)
n (x) respectively.

(b) (2 point) Solve for the first order correction to the ground state energy, E
(1)
1 .

(c) (3 point) Solve for the first order correction to the ground state wavefunction, Ψ
(1)
1 (x).

(d) (3 point) Solve for the second order correction to the ground state energy, E
(2)
1 .

(e) (1 point) Sketch the exact ground state wavefunction for when the perturbation is mod-

erately strong compared to the ground state energy, U0L ≈ E
(0)
1 . Your answer need not

be numerically precise, but should be qualitatively correct.

Your final expressions in your answers above may involve sums, but should not involve
any unevaluated integrals.
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PROBLEM 5: Generalized Uncertainty Principle

The normalized wave function of a one-dimensional particle is

〈x|ψ〉 = ψ(x) = N
[

eλxθ(−x) + e−λxθ(x)
]

for some real parameter λ > 0 and state vector |ψ〉. Here θ(x) is the step function and the
normalization constant N is real and positive.

(a) (1 point) What is the normalization constant N?

(b) (2 point) Calculate the expectation values of x̂2: 〈x̂2〉.

(c) (2 point) Find the momentum space wave function φ(p)

φ(p) ≡ 〈p|ψ〉 .

(d) (2 point) Calculate the expectation values of p̂2: 〈p̂2〉.

(e) (3 point) Determine the uncertainty relation ∆x∆p with 〈x̂〉 = 0 and 〈p̂〉 = 0 .
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PROBLEM 6: Angular Momentum Operator

Consider the standard angular momentum operators and basis states:

L2|ℓ,mz〉 = ℓ(ℓ+ 1) h̄2|ℓ,mz〉, Lz|ℓ,mz〉 = mzh̄|ℓ,mz〉 (4)

The angular momentum raising and lowering operators are very useful for calculations of
angular momentum properties. These are defined as:

L± = Lx ± iLy (5)

L±|ℓ,mz〉 =
√

ℓ(ℓ+ 1)−mz(mz±1) h̄|ℓ,mz ± 1〉 (6)

For this problem, consider the sub-space of Hilbert space with ℓ = 1. The Lz basis states
can be defined as |mz〉 with mz = 1, 0, − 1

(a) (2 point) Using the raising and lowering operators, show that 〈mz|Lx|mz〉 = 0 and
〈mz|Ly|mz〉 = 0.

(b) (2 points) Calculate the matrix elements 〈mz|L±|nz〉 of the raising and lower operators
for all mz and nz states.

Use your answers to write down the 3×3 matrix representations of these two operators.

(c) (1 point) Show from your previous results that the raising and lowering operators are
non-Hermitian but the operators Lx and Ly are (of course) Hermitian.

(d) (2 points) Solve for the eigenvalues and eigenvectors of the operator Ly.

(e) (3 points) Consider the state

|ψ〉 = 1√
5
(|mz = 1〉+ 2|mz = 0〉) (7)

What are the possible outcomes and probabilities for a measurement of Ly for the state
|ψ〉?


