Integrating Induced Seismicity with Fault Interpretation at the Decatur, IL CCS Projects

Sherilyn Williams-Stroud

Illinois State Geological Survey University of Illinois Urbana-Champaign

Oklahoma and the Energy Transition – OGS Workshop 2022

Illinois State Geological Survey 🛛 📕 ILLINOIS

Initiatives to Accelerate CCUS in the United States

CCS in the Illinois Basin

Decatur CCUS Project Descriptions

Illinois Basin – Decatur Project

- Large-scale demonstration
- Volume: 1 million tonnes
- Injection period: 3 years
- Injection rate: 1,000 tonnes/d
- Compression capacity: 1,100 tonnes/day Contribution:
- Geologic and Social Site Characterization
- Reservoir Modeling and Risk Assessment
- MVA Development and Engineering Design
- Stakeholder Engagement

Status:

- Post-injection monitoring ended April 2020
- Project completed June 2021

Illinois Industrial CCS Project

- Industrial-scale demonstration
- Volume: up to 5 million tonnes
- Injection period: 3 years (or longer)
- Injection rate: 3,000 tons/d
- Compression capacity: 2,200 tonnes/day Contribution:
- · Commercial-scale up surface and subsurface
- Intelligent Monitoring
- Class VI permitting

Status:

- Injection Began April 7, 2017
- Optimization of capture process
- >2,000,000 tonnes to date

Porosity Inversion Detail - Structure

Faults Interpreted from Seismic Image

- What do we need to know?
 - Whether there are faults in the reservoir confirmed.

Fault displacement versus fault length for the 9 largest faults interpreted in the 3D seismic volume

Illinois State Geological Survey | ILLINOIS

Faults Interpreted from Seismic Image

- What do we need to know?
 - Whether there are faults in the reservoir confirmed.
- Why do we need to know it?
 - They could compromise top seal or lead to induced seismicity also confirmed.
- What does "know" mean in this context?
 - Uncertainty related to interpretation – was compounded by seismicity.

Comparing Seismicity to Faults

Illinois State Geological Survey

Comparing Seismicity to Faults

Illinois State Geological Survey

0 0.25 0.5 Kilometers

DEC08

Historical Natural Seismicity

- Earthquakes in Illinois since 1795
- Some activity in northern
 Illinois
 - Moment tensors shown for 3.8 and 4.2 Mw earthquake
- Most activity is in southern part of state, where basin is deepest and has highest structural complexity
 - Moment tensors shown for Mw 5.2 EQ followed by a Mw 4.0 aftershock

Earthquake Magnitude Reference Energies

Comparing to Wastewater Injection

		Location	Injection rate m³/day	Injection period	Induced seismicity	Felt seismicity
CO ₂		IBDP CCS1 well ¹	1123	3 years	Yes (Mw -2.1 to 1.2)	No
		IL-ICCS CCS2 well ¹	1950	3 years	Little (Mw -2 to 0.8)	No
Waste- water – injection		East Texas ²	2000	1 year or more	Yes (Mw 4.8)	Yes
		Williston Basin ³	3300	1 month or more	Some (Mw 1.4 to 2.8)	No
		Arkansas ⁴	2030	1 year or more	Yes	Yes
		S. Texas (Eagle Ford) ⁵	900	Several months	Yes	Yes

¹Williams-Stroud et al., BSSA 2020 ²Frolich, PNAS 2012 ³Frolich et al., SRL 2015 ⁴Horton, SRL 2012 ⁵Frolich and Brunt, EPSL 2013

Illinois State Geological Survey

CO₂ Injection Periods at Decatur

Seismicity / Pumping Rate: Poor Correlation

Deep Monitoring Wells

- Injection wells
 - CCS1 and CCS2
 - ~1100 m apart
- Geophysical monitoring wells
 - GM1 (31 geophones for VSP and microseismic)
 - GM2 (3 deep geophones for microseismic)
- Verification wells measuring temperature and pressure
 - VW1 and VW2

2nd Injection (CCS2) Pressure Response

Eau Claire Shale

Geologic Modeling – Baffle Facies

Impacts on reservoir response include:

- Reservoir quality
- Injection zone depth
- Reservoir heterogeneity, barriers to vertical flow
- The baffle facies improved the history matching, accounting for strong vertical flow anisotropy.
- Low-permeability layers were matched to the well depth, but stochastically distributed in the reservoir between wells.

- Events are sized by magnitude, colored by time
- Blue events are the earliest – most of the clusters formed in the first few months of injection

Conclusions

- Faults were identified in the reservoir, originally with high uncertainty
- No top seal leak risk was identified, but induced seismicity occurred
 - not on the faults that were identified before injection, but uncertainty of some faults was decreased by integration with induced seismicity
- Detailed analysis of the induced seismicity revealed
 - Smaller features within the clusters
 - Probable fracture corridors in the basement
- Geomechanical testing and observed failure in the reservoir aren't consistent
 - Geochemical interactions may play a bigger role than originally thought

Acknowledgments

- The Illinois Basin Decatur Project was funded by the U.S. Department of Energy (DOE)
- Understanding the data continues to improve through collaborations, including
 - The MRCI (Midwest Regional Carbon Initiative), a collaboration between multiple state geological surveys and academic institutions and industry, funded by DOE
 - Illinois Storage Corridor CarbonSAFE projects in other Illinois Basin locations
- Petroleum Experts donated the MOVE structural modeling and analysis software used in this study, and Schlumberger Petrel was used to build the static model from the fault interpretation

ILLINOIS

Illinois State Geological Survey PRAIRIE RESEARCH INSTITUTE

Failure Analysis

- Cluster D3 formed mostly prior to installation of surface seismic monitoring network
- Source mechanism failure planes consistent with burst best-fit plane orientations
- Observed failure planes are much weaker than expected by Mohr-Coulomb criteria
 - lab friction angle = 42°, all planes fail if friction angle is 12°

Illinois State Geological Survey 🛛 👖 ILLINOIS

Subsurface injection – comparisons and issues

Wastewater disposal

- Volumes injected
 - 800 2000 m³/day
- · Associated induced seismicity
 - Felt events, Mw 5.7 in OK
- Groundwater contamination
 - Dispersal and dilution enough
 - Water-rock interaction
- Pore space needed to maintain injection without contaminating gw and causing earthquakes
 - ?
- Reservoir pressure increases linearly with H₂O injection

Carbon sequestration

- Volumes injected
 - CCS1 average 800 m³/day
 - CCS2 average 1900 m³/day
- No felt events
 - All detected events < Mw 2*
- Leak containment
 - Is top seal integrity sufficient?
 - Does microseismicity compromise topseal via faults?
- Reservoir pressure increase with CO₂ injection influenced by¹:
 - scCO₂ behaves like gas
 - Dissolution
 - Water saturated with CO₂ denser than brine
 - Water-CO₂-rock interaction