Critical Mineral Extraction from Waste Streams: Li, REE, Ni, and V

Jinichiro Nakano Technical Fellow Research & Innovation Center

This project was funded by the Department of Energy, National Energy Technology Laboratory an agency of the United States Government, through a support contract. Neither the United States Government nor any agency thereof, nor any of its employees, nor the support contractor, nor any of their employees, makes any warranty, expressor implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Jinichiro Nakano and Anna Nakano

National Energy Technology Laboratory, 1450 Queen Avenue SW, Albany, OR 97321, USA NETL Support Contractor, 1450 Queen Avenue SW, Albany, OR 97321, USA

Critical Elements: REE, Li, Ni, and V

Clean energy applications

https://www.netl.doe.gov/research/coal/rare-earth-elements

Bare Earth Elements

Rare Earth Elements (Demand)

• \$120 million imported into the U.S. in 2016

Zhou, et al., Minerals 2017, 7, 203

U.S. DEPARTMENT OF

DOE's Critical Materials Strategy 2010

6

U.S. REE Production/Projects Status

MP MATERIALS

MP Materials

- NY listed in November 2020
- The only active U.S. REE mine (Mountain Pass, CA)
- Focus on *LREEs*
- ~10% owned by Shenghe Resources
 - Buys all of MP REE concentrates and process in China

USA Rare Earth

- NY listing in 2021 (plan)
 - \$1.56 billion valuation
 - \$350.4 million capital (1.4 yr payback)
- The Round Top project in Sierra Blanca, Texas
 - Partner with Texas Mineral Resources Corp

USA Rare Earth

- 20,000 t/day mining
- 2212 t/y REO production
- > 100 years supplies
- Focus on *HREEs* (70%)
- Also intends to mine lithium
 - 8956 t/y Li₂CO₃ production

JATIONAL

Titan Project

- Total Mineral Resource of 431Mt @ 2.2% Total Heavy Minerals ("THM")
- High value THM
 assemblage of 12% zircon,
 10% rutile, 40% ilmenite
 and 2% REE concentrate
 with an excellent ratio of
 heavy and light rare earths

Lynas Rare Earths

Lynas

- Australian miner, the largest
 REE operation outside China
- \$30 million funded by the Pentagon
 - Plans a *LREE* processing plant in Hondo, Texas
 - Would produce 1/4 of world supply

Rare Earth Elements (Production)

- Mining naturally-occurring REE ores/sand: monazite, xenotime, etc.
- Excavation, crushing, separation, acid leaching

Monazite ore

monazite sand

mining

Prices of REE ores: \$ 500 - 116,000 per ton (vs. \$ 70 per ton for iron ores)

Molten 2021, Nakano et al.

More REEs Resources? \rightarrow Coal By-Product

Molten 2021, Nakano et al.

REEs in Coal Ash and Petcoke Slag

REEs in Biomass

- Historical wildfires on West Coast produced fly ash in summer of 2020.
- More than 1.2 million acres burned in OR alone.

Nakano, unpublished

REEs in Plastics

Table 2 Individual and summed concentrations of REEs in each consumer plastic (in mg kg⁻¹) Note that numbers preceded by "<" are sample- and element-specific method detection limits.

Description	Sample	Sc	Y	La	Се	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Sum
Board game	1	0.31	0.28	0.32	0.19	0.039	0.14	< 0.05	0.024	0.032	0.006	0.025	0.006	< 0.02	< 0.005	< 0.02	< 0.005	1.38
Coat hanger	2	0.33	0.21	0.50	0.38	0.099	0.38	< 0.05	0.096	0.067	0.005	< 0.02	< 0.005	< 0.02	< 0.005	< 0.02	< 0.005	2.07
Tyre cap	3	0.84	0.69	1.49	1.37	0.27	0.94	0.21	0.076	0.18	0.028	0.14	0.028	< 0.3	< 0.02	< 0.3	< 0.02	6.27
Poster tube cap	4	< 0.2	0.06	0.31	0.13	0.025	0.085	< 0.05	0.028	< 0.02	< 0.005	< 0.02	< 0.005	< 0.02	< 0.005	< 0.02	< 0.005	0.64
Makeup brush handle	5	0.51	0.80	0.83	0.42	0.090	0.33	0.094	0.33	0.088	0.015	0.077	0.017	0.048	0.008	0.044	0.008	3.71
Makeup brush bristles	6	< 0.3	< 0.03	1.04	< 0.03	< 0.005	< 0.03	< 0.05	< 0.005	< 0.07	< 0.015	< 0.07	< 0.005	< 0.3	< 0.005	< 0.3	< 0.005	1.04
Bag handle	7	< 0.2	0.051	<0.2	0.095	0.022	0.072	< 0.05	0.068	< 0.02	< 0.005	0.068	< 0.005	< 0.02	< 0.005	< 0.02	< 0.005	0.38
Timer switch casing	8	< 0.2	< 0.02	<0.2	< 0.02	< 0.003	< 0.02	< 0.04	< 0.004	< 0.02	< 0.004	< 0.02	< 0.004	< 0.02	< 0.004	< 0.02	< 0.004	< 0.60
Torch casing	9	0.54	0.91	2.60	0.96	0.18	0.64	0.14	0.054	0.13	0.021	0.11	0.022	0.060	0.009	0.051	0.009	6.43
Magnifying glass handle	10	0.30	0.96	1.49	1.67	0.41	1.32	0.23	0.24	0.25	0.027	0.24	0.038	0.085	0.014	0.077	0.012	7.37
Games counter	11	0.75	< 0.02	<0.2	< 0.02	< 0.002	< 0.02	< 0.03	< 0.003	< 0.02	< 0.003	< 0.02	< 0.003	< 0.02	< 0.003	< 0.02	< 0.003	0.75
Water pipe adaptor	12	<0.2	0.078	<0.2	0.048	0.011	0.037	< 0.04	< 0.004	< 0.02	< 0.004	< 0.02	< 0.004	< 0.02	< 0.004	< 0.02	< 0.004	0.17
Cocktail stirrer	13	< 0.2	0.055	<0.2	0.11	0.022	0.081	< 0.05	0.026	< 0.02	< 0.005	< 0.02	< 0.005	< 0.02	< 0.005	< 0.02	< 0.005	0.29
Xmas beads	14	0.33	0.530	1.92	2.53	0.28	1.46	0.13	0.30	0.16	0.026	0.15	0.013	0.032	0.005	0.025	0.005	7.89
Ink cartridge	15	< 0.2	< 0.02	<0.2	< 0.02	< 0.003	< 0.02	< 0.05	< 0.003	< 0.002	< 0.003	< 0.02	< 0.003	< 0.02	< 0.005	< 0.02	< 0.003	< 0.59
CD case (backing)	16	0.48	0.027	<0.2	0.050	0.015	0.040	< 0.05	0.037	< 0.002	< 0.003	< 0.02	< 0.003	< 0.02	< 0.005	< 0.02	< 0.003	0.64
CD case (cover)	17	0.25	< 0.02	0.24	< 0.02	< 0.003	< 0.02	< 0.05	< 0.003	< 0.002	< 0.003	< 0.02	< 0.003	< 0.02	< 0.005	< 0.02	< 0.003	0.50
Desk corner cover	18	0.53	0.023	0.55	0.050	0.012	0.038	< 0.05	0.006	< 0.002	< 0.003	< 0.02	< 0.003	< 0.02	< 0.005	< 0.02	< 0.003	1.21
Xmas candy container	19	0.60	< 0.02	0.29	< 0.02	0.005	< 0.02	< 0.05	< 0.003	< 0.002	< 0.003	< 0.02	< 0.003	< 0.02	< 0.005	< 0.02	< 0.003	0.90
Bottle top	20	< 0.2	0.038	<0.2	0.11	0.030	0.10	< 0.05	< 0.003	0.023	< 0.003	< 0.02	< 0.003	< 0.02	< 0.005	< 0.02	< 0.003	0.30
Bottle top	21	< 0.2	< 0.02	<0.2	< 0.02	< 0.002	< 0.02	< 0.05	< 0.003	< 0.002	< 0.003	< 0.02	< 0.003	< 0.02	< 0.005	< 0.02	< 0.003	<0.59
Take out container	22	<0.2	< 0.02	0.65	< 0.02	0.005	< 0.02	< 0.05	< 0.003	< 0.002	< 0.003	< 0.02	< 0.003	< 0.02	< 0.005	< 0.02	< 0.003	0.66
Remote control	23	< 0.2	< 0.02	0.47	< 0.02	< 0.002	< 0.02	< 0.05	0.005	< 0.002	< 0.003	< 0.02	< 0.003	< 0.02	< 0.005	< 0.02	< 0.003	0.48
Water bottle	24	<0.2	< 0.02	<0.2	< 0.02	< 0.003	< 0.02	< 0.05	< 0.003	< 0.002	< 0.003	< 0.02	< 0.003	< 0.02	< 0.005	< 0.02	< 0.003	<0.59
Water bottle lid	25	<0.2	< 0.02	<0.2	< 0.02	< 0.003	< 0.02	< 0.05	< 0.003	< 0.002	< 0.003	< 0.02	< 0.003	< 0.02	< 0.005	< 0.02	< 0.003	<0.59
Yoghurt pot	26	<0.2	< 0.02	<0.2	< 0.02	< 0.003	< 0.02	< 0.05	< 0.003	< 0.002	< 0.003	< 0.02	< 0.003	< 0.02	< 0.005	< 0.02	< 0.003	<0.59
Bottle top	27	<0.2	< 0.02	0.48	< 0.02	0.004	< 0.02	< 0.05	< 0.003	< 0.002	< 0.003	< 0.02	< 0.003	< 0.02	< 0.005	< 0.02	< 0.003	0.49
Fruit container	28	< 0.2	< 0.02	<0.2	< 0.02	0.005	< 0.02	< 0.05	< 0.003	< 0.002	< 0.003	< 0.02	< 0.003	< 0.02	< 0.005	< 0.02	< 0.003	0.005
Ink pen	29	0.37	< 0.02	<0.2	< 0.02	0.004	< 0.02	< 0.05	< 0.003	< 0.002	< 0.003	< 0.02	< 0.003	< 0.02	< 0.005	< 0.02	< 0.003	0.37
Blackberry case	30	<0.2	< 0.02	<0.2	< 0.02	< 0.003	< 0.02	< 0.05	< 0.003	< 0.002	< 0.003	< 0.02	< 0.003	< 0.02	< 0.005	< 0.02	< 0.003	<0.59
Computer mouse	31	0.53	< 0.02	<0.2	0.024	0.013	0.027	< 0.05	< 0.003	< 0.002	< 0.003	< 0.02	< 0.003	< 0.02	< 0.005	< 0.02	< 0.003	0.59

How Monazite Forms in Nature?

- Monazite (REE phosphate) is known to exist below earth's surface in limited areas.
- Geologists report the formation of natural monazite requires extremely high pressures up to 25,660 atm (about 377,100 psi) and elevated temperatures.

REE beneficiation technologies from monazite already exist.

Is it possible to synthesize monazite from recycling materials?

Molten 2021, Nakano et al.

NETL Thermal Fusion Approach

NATIONAL ENERGY TECHNOLOGY LABORATORY

U.S. 10,358,694 B2 (Nakano, et al.)

Successful Monazite Formation in Air

Synthetic coal slag (9% REE)

SEM-EDS (wt.%)

Phase	0	Al	Si	Р	Са	Fe	La	Sm	Но
Mullite	54.9	32.1	9.8			3.1			
Monazite	28.0	0.6	0.5	12.2	0.4		18.2	17.1	23.0
Hematite	41.0	4.7	1.3	0.3	0.3	52.4			
Slag	69.8	7.2	15.8	1.9	2.8	2.4			0.1

LREEs and HREEs are both found in monazite, on the contrary to naturally occurring monazite.

C.f. Theoretical max = 59 wt.%

Molten 2021, Nakano et al.

The Onset of Monazite Formation (CSLM)

Cooling from 1600 °C

Monazite

Close-up

64x playback

64x playback

Nakano, et al., MOLTEN 2021

Phase Formation Temperatures (Tentative)

U.S. DEPARTMENT OF

Monazite production by thermal approach NE NATIONAL

Empirical trials were performed to concentrate REEs into monazite (REEPO₄) from molten synthetic coal ash (slag) and cooling it under predetermined conditions. The monazite formation was successfully confirmed with coal ash containing down to 500 ppm REE. Concentration in monazite as high as **58 wt.% REE** was noted.

- 1. $P_2O_3^{4+}$ in slag ($P_2O_7^{4-}$ networking with O^{2-} similar to SiO_4^{4-})
- 2. $P_2O_3^{4+} + 2O^{2-} + REE^{3+} = REEPO_4$

Scale-Up Demonstration: 3 kg Coal Ash

Fused ash

- 0.058% REE in original ash
- 2.5% REE in the concentrate
- 83% REE yield
- HREE/LREEs : up to 148:1

2.5% REE REE in the concentrate

- HREE: 1 15 ppm each in original ash
- Note Gd and Dy hidden behind Fe energy spectrum

Nickel and Vanadium

Ni, V from Petcoke By-Product

(wt.%)	U.S. coal as	sh		U.S. petcoke ash			Canadian coal ash			Canadian petcoke ash		
Reference	[4]			[5,6]			[7,8]			[9,10]		
Ash components	Average	Min	Max	Average	Min	Max	Average	Min	Max	Average	Min	Max
SiO ₂	43.6	7.1	68.5	13.6	1.6	23.6	52.0	35.5	67.3	41.4	37.0	50.1
Al_2O_3	25.1	4.1	38.6	5.6	0.5	9.4	18.6	16.3	20.3	19.6	14.4	24.9
TiO ₂	0.6	0.0	3.7	0.2	0.0	0.4	0.7	0.5	0.8	2.3	0.6	4.8
Fe ₂ O ₃	17.0	2.1	69.7	9.3	2.5	31.6	9.4	2.6	32.0	9.9	7.4	12.1
CaO	5.8	0.5	45.1	5.4	2.2	11.9	6.9	2.3	13.6	5.1	1.6	15.8
MgO	1.2	0.0	8.0	1.2	0.2	5.1	1.4	0.9	2.7	1.9	1.3	3.9
Na ₂ O	0.3	0.0	6.5	0.7	0.1	1.8	1.9	0.4	6.0	1.2	0.7	1.7
K ₂ O	0.4	0.0	3.5	0.6	0.3	1.2	1.4	0.3	2.3	1.6	0.9	1.9
SO ₃	4.1	0.0	32.3	3.8	0.8	13.8	4.5	1.1	14.3	2.6	1.9	7.1
P_2O_5	0.1	0.0	8.0	-	-	-	0.2	0.0	0.6	0.1	0.0	0.4
NiO	<u> </u>	_	122	8.8	2.9	12.0	0.0	0.0	0.0	1.9	1.1	2.6
V ₂ O ₅	-	-	-	49.4	19.7	74.5	0.0	0.0	0.0	10.1	3.2	20.3
Total	98.3			98.6			97.1			97.8		
SiO_2/Al_2O_3	1.73			2.45			2.79			2.11		

Compositions of industrial coal and petcoke ashes found in the U.S. and Canada.

J. Nakano et al./Fuel 161 (2015) 364–375

Saudi

(wt%)	
Arsenic (As)	0.044
Cadmium (Cd)	0.065
Cobalt (Co)	0.065
Chromium (Cr)	0.080
Copper(Cu)	3.370
Mercury (Hg)	0.005
Nickel (Ni)	34.848
Lead (Pb)	0.217
Selenium (Se)	0.229
Vanadium (V)	58.489
Zinc (Zn)	2.587
total	100.000

Int. J. Environ. Sci. Technol. (2014), A. Mofarrah, et al.

U.S. DEPARTMENT OF ENERGY

NETL carbothermal technology

Ni, V from Petcoke By-Product

U.S. 10,323,298 B2 (Nakano, et al.)

Ni, V from Petcoke By-Product

Petcoke slag from gasification power plant

Technological Need for Brine Sources

Reuters-environment, 2019

100

75

50

25

ATIONAL

Green Car Congress, Oct 6, 2020

Economics

Brines have higher margins while integrated conversion facilities result in increased margins for hard-rock producers

Li prices (as of 2019):

- Spodumene concentrate: \$4,587/t
- Li₂CO₃: \$12,500/t

Existing Brine Processes

NATIONAL ENERGY TECHNOLOGY LABORATORY

Simbol

Challenges with CO₂ Pumping Approach

• *CO₂ pumping* is one of the known techniques to cause *mineralization* with elements dissolved in liquids such as sea water and brine:

 $CO_2 + H_2O + 2Li^+ = 2H^+ + Li_2CO_3$

- However, as *more CO*₂ is pumped in, it acidifies the liquid, which *reverses the reaction*, limiting outcome.
- This *dilemma* has never been solved in industry without modifying the system: Thermodynamic manipulations.

Modified from: Ma, energy and fuels, 2013, 27, 4190-4198

Existing CO₂-Based Extraction Techniques

NATIONAL ENERGY TECHNOLOGY LABORATORY

(Thermodynamic manipulations)

NETL's Previous Approach: Supercritical CO₂

U.S. 10,315,926 B2 (Nakano, et al.)

16/537,985 (Nakano, et al.)

NATIONAL

ENERGY TECHNOLOGY LABORATORY

NETL's Current Approach: 'Ambient' CO₂ Injection NETL'S Current Approach: 'Ambient' CO₂ Injection

Designed and developed for Li recovery from brines

Controlled CO_2 can be injected into a brine in a continuous fashion (up to 1,500 L/hr).

Product: High Purity Li₂CO₃

Dissolved solids: Li (0.3%), Ca, Si, Cu, Fe, Na, Cl

	[20s01653zbh.ravj LI2-OD-6 LI2CO3 - Small-area sold X-ray diffraction
35	04-013-0887-7.204yeme - Lig(CO3)
30	10%(r(10)
25	
eninoo kiisiian	
15	.16.3%(111) .16.3%(111) .16.003, 24.3% %(021) %(021)
10	
5	

	Form	ula mass% Atom%	⁄0
%	С	18.77 23.57	
	0	80.80 76.17	
	Na	0.31 0.20	
	Si*	0.08 0.04	
	Cu*	0.04 0.01	
	Total	100.00 100.00	

Lithium Carbonate Kinetics

NETL's current approach: Ambient CO₂ injection

Li water (fresh)

Dissolved solids: Li (0.3%), Ca, Si, Cu, Fe, Na, Cl

Li brine (saline)

Dissolved solids: Li (0.3%), Ca, Si, Cu, Fe, NaCl (8%)

No salt precipitates

- Verified with 3,000, 300, and 30 ppm Li (i.e., 0.3, 0.03, and 0.003 % Li)
- Validated with oil & gas produced brine with 18 ppm Li (0.0018 % Li)
- 2 license applications submitted to NETL
- 2 CRADAs in process
- Encouraging diversified use of field

NETL Resources

VISIT US AT: www.NETL.DOE.gov

@NationalEnergyTechnologyLaboratory

NETL Contacts

Presenter: Jinichiro Nakano (jinichiro.nakano@NETL.DOE.gov)

Technology Transfer: Jessica Lamps (jessica.lamp@NETL.DOE.gov)

Federal supervisor: Marisa Arnold (marisa.arnold@NETL.DOE.gov)

Associate director: David Alman (david.alman@NETL.DOE.gov)

